O Physicité L’oscillateur harmonique

The career of a young theoretical physicist consists of treating the harmonic oscillator in
ever-increasing levels of abstraction.
— Sidney Coleman

L’oscillateur harmonique touche a toute la physique. Comme vous le verrez dans les
exemples, cela nous amenera a examiner de nombreux domaines, thermodynamique des
trous noirs, optique, biophysique, électrocinétique, électrodynamique quantique et bien s(r,
mécanique. Il s’agit de regarder les systemes physiques proches de leurs positions d’équilibre
et d’en déduire des propriétés sur ceux-ci. Shall we?

1 Stabilité des équations différentielles

Les systémes physiques sont régis par des équations différentielles. Il est donc naturel
gu’on s’intéresse a la stabilité des quantités régies par des équations différentielles, parce que
c’est le langage de la physique. Ici,  est une quantité quelconque, cela peut-étre la position,
la vitesse, la concentration, le potentiel, 'angle... On va s’intéresser surtout a de la stabilité
temporelle, d’ou la notation (= ‘Zl—f), mais cela s’applique a toutes les dépendances (comme la
position).

On se restreindra aux équations suivantes, qui sont celles qu’on rencontre presque tout le
temps en physique :
T = f(x) (M
Equation différentielle d’ordre 1, et
= f(x) (2)
Equation différentielle d’ordre 2.

Ou f est une fonction quelconque.

1.1 Positions d’équilibre

Quelles sont les positions d’équilibre ? Comment les trouver ? Et bien un position d’équilibre
est un endroit ou l'on peut rester indéfiniment. C’est-a-dire une position telle qu’il n’y ait pas
de mouvement. En ce point, on doit donc avoir [& =0 et # = 0],

Une position d’équilibre est un zéro de f, c’est-a-dire un point ou f passe par 'axe des
abscisses.

Exemples :

Pendule simple :
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O Physicité L’oscillateur harmonique
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L’équation du pendule simple est :
0+ %sin(@) =0

Donc les deux positions d’équilibre sont les 6., tels que ¢sin(f,) = 0. Doncsin(f.,) = 0, c’est-
a-dire 6., = 0 ou 6., = m. On attendait la premiere position d’eéquilibre, mais § = 7 est plus
surprenant. On verra par la suite qu’elle est instable, ce qui est conforme a ce qu’on peut
attendre.

Rotation de UATP-synthase :

La molécule de 'ATP-synthase est constituée d’une partie immobile, le stator, et d’'une
partie pouvant se mettre en rotation autour du stator, le rotor. Sa rotation propre est donnée
par ’équivalent du principe fondamental de la dynamique (PFD) en rotation, le théoréme du
moment cinétique :

Jé:a—k9<1—971)

01

Représentons la fonction 6 +— kG(l — m), pour un grand 6.

Pour ’équilibre, on veut
01
o= k:@eq(l — 7)
\/ 0%, + 03

On a donc trois possibilités en fonction de la valeur de a.
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O Physicité L’oscillateur harmonique

Dans ce cas, une position d’équilibre.

Dans celui-ci, trois.

Dans ce dernier, une seule.

1.2 Stabilité des positions d’équilibre

La notion de stabilité est un peu plus fine. L’idée est que si une position est stable, on va
y revenir quoi qu’il arrive. Et si elle est instable, au moindre coup de vent on s’en éloignera
substantiellement.

On suppose qu’on a une position d’équilibre zy. La précision parfaite n’existe pas, il y aura
donc quoi qu’il arrive des variations autour de cette position : imprécision de 'expérimentateur,
coup de vent, agitation thermique, et, si on est vraiment fou, fluctuations quantiques. On note
donc ¢ la petite variation que subit le systeme autour de sa position d’équilibre.

Supposons que f soit croissante.

-Sie >0,z =x9+¢e > x0, donc f(x) > f(xg) =0 donc & >0 ou & > 0. Donc = a tendance a
augmenter, donc a s’éloigner d’autant plus de la position d’équilibre.

-Sie <0,z =x0+¢e <z, donc f(x) < f(zg) =0 donc & <0 ou & < 0. Donc z a tendance a
diminuer, donc a s’éloigner d’autant plus de la position d’équilibre.
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O Physicité L’oscillateur harmonique

Propriété 1: Equilibre instable

Donc si f est localement croissante, la position d’équilibre est instable.

Donc x augmente

Donc}de{ent positive
~
\ya/gmente x

Supposons que f soit décroissante.
-Sie >0,z =29 +¢e > xp, donc f(z) < f(z9) =0 donc & <0 ou & < 0. Donc x diminue, donc
se rapproche de xg.

-Sie <0, x=mx0+¢ < x9, donc f(x) > f(zg) =0 donc & > 0 ou & > 0. Donc = augmente, donc
se rapproche de xg.

Propriété 2 : Equilibre stable

Donc si f est localement décroissante, la position d’équilibre est stable.

/Agmente
— A

X
Donc f devient négative

f

Donc z diminue

Ces résultats ne sont pas a connaitre par cceur, mais les raisonnements et les dessins sont
a savoir refaire.

Exemples :

Pendule simple :

On reprend l’équation du pendule simple :
0= —%sin(&)

sin est croissante au voisinage de 0, et décroissante au voisinage de «. # = 0 est donc une
position d’équilibre stable, et 6 = 7 est une position d’équilibre instable. Ces deux résultats
sont attendus.
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Pour 6 = 7, si 6 diminue un peu, le poids a une composante non-nulle négative selon iy,
donc le poids a tendance a faire diminuer 6, ce qui fait tomber la masse.

Pour # = 0, si # augmente un peu, le poids a une composante non-nulle négative selon 1,
donc 6 a tendance a diminuer.
Equation différentielle linéaire d’ordre 1:
L’équation
dx
=k
at
admet O pour unique position d’équilibre et est stable pour k£ < 0, instable pour & > 0.
Rotation de UATP-synthase :
La pente de la fonction de droite dans

Jé:a—ke(l—L)

est 'opposée de la pente de la fonction bleue. La monotonie d’une fonction est reliée au signe

de sa pente (par la dérivée). La solution de gauche, quand elle existe, est donc stable. Celle du

milieu, quand elle existe est instable. Et celle de droite, quand elle existe, est stable.
Thermodynamique des trous noirs (IPhOs, Liban 2007) :

On peut montrer que la masse d’un trou noir, a ’équilibre entre son rayonnement propre
et le rayonnement du fond diffus cosmologique, vérifie

dm _ _ het nt _m“)
dt  16G2m?2 m*4

On se demande alors, les trous noirs ont-ils tendance a s’évaporer ou a se stabiliser?
(question légitime)

On remarque que m* est clairement la seule position d’équilibre de la masse. Si m > m*, on
remarque que ij—’? > 0, donc on s’éloigne de m*. De méme, si m < m*, ij—’? > 0, donc on s’éloigne
encore de m*. C’est donc un équilibre instable! Reste a savoir s’ils ont tendance a s’évaporer
ou a engloutir tout lunivers...

X Physique SI 2017 :

En étudiant un transducteur électroacoustique, on est ramené a l’équation différentielle :

aX = 4)G(X) - X

On représente la fonction ApG ainsi que la droite Y = X :
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Les positions d’équilibre sont les croisements de ces deux courbes. Pour la premiéere
position d’équilibre, la pente de 4yG(X) est plus grande que celle de X, donc AyG(X) — X est
croissante, donc la position est instable. Pour la deuxieme position d’équilibre, c’est l'inverse,
elle est donc stable.

2 Comportement des sytémes physiques au voisinage d’une position
d’équilibre

Le principe fondamental de la dynamique s’écrit, en une dimension,
mi=F (3)

On se limitera donc dans cette partie a des équations de cette forme. Nous voulons aussi
écrire que F est une fonction de z, pour se ramener aux cas étudiés précédemment. Ce n’est
pas toujours possible. En effet si on prend un élastique, et qu’on tire dessus si fort qu’on le
distend, au retour il n’exercera pas la méme force qu’a laller, puisque ses caractéristiques
physiques ont été modifiées entre ’aller et le retour. Cependant, suffisamment proche d’une
position d’équilibre, c’est possible.

Nous voulons savoir comment un systeme physique se comporte lorsqu’il est un tout petit
peu perturbé par rapport a sa position d’équilibre. Nous nous fichons de tout connaftre sur le
systéme, nous voulons seulement son comportement (donc quelque chose d’approximatif) au
voisinage d’une position d’équilibre, puisque comme on l'a vu plus haut, c’est le comportement
local qui nous renseigne sur la stabilité. Cette approche est d’autant plus valable que, si la
position d’équilibre est stable, on sait que l'on reste proche de celle-ci, donc on 'approximation
au voisinage de la position d’équilibre reste vraie. Nous nous permettons donc d’approximer la
force par sa tangente en la position d’équilibre. Puisqu’on veut avoir & = 0, pour une position
d’équilibre zg, on a F(z() = 0. On écrit donc

mi ~ — (x — x9) (4)

Il s’agit simplement de l’équation de la tangente a F' en x.
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Et comme on l’a vu plus t6t, la monotonie de F' au voisinage de x, c’est-a-dire le signe

de % , hous renseigne sur la stabilité de la position d’équilibre. Plutdét que de systémati-
T=x

quement dériver, ce qui peut étre technique et long a faire, nous allons apprendre un moyen
efficace de linéariser des fonctions, les développements limités.

2.1 Développement Limités (DLs)

Faire un DL, c’est approximer localement une fonction par un polynéme. Un DL a l'ordre n,
c’est approximer une fonction par un polyndme de degré n. Nous ferons essentiellement des
DLs a l'ordre 1, c’est-a-dire linéariser. Le principe est donc exactement ce qu’on a vu, c’est
regarder localement ce qui se passe pour une fonction donnée, et en donner l’équation de la
tangente. Simplement la méthode est autre que la dérivation (mais donne heureusement le
méme résultat). On commence par donner les DLs de fonctions usuelles au voisinage de O,
pour une variable x adimensionnée.

Fonction | DL a Uordre 1en O
er 1+
In(1+ z) x
(1+z) 1+ax
cos(z) 1
sin(x) x

Il peut étre utile de connaitre le DL a l'ordre 2 de cos : cos(x) = 1-— %
€T

Comment savoir si on est suffisamment proche de 0? Les fonctions citées varient sur une
échelle typique de lordre de l'unité, il faut donc avoir . Petit comment? Cela dépend
de la précision de l’expérience. Mais on sait désormais a quoi comparer x pour faire une
approximation. Ce qui U'est important de comprendre c’est que plus on monte dans les ordres,

et plus les termes sont petits. En effet, 2+ < 1, donc 2" <« 2"
<1 <1

Méthode 1: Calcul des DLs adimensionnés au voisinage de 0

On utilise les DLs usuels pour obtenir une somme de produits de fonctions linéarisées.
Les DLs se composent, se multiplient et s’additionnent naturellement. Puisque l'on fait
une linéarisation, on néglige tous les termes avec des puissances de x plus grandes que
1.
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Exemple :
(1+ aj)ﬂe(l"'z)a = (1+ Bx)eltor
= (14 Bx)e x e*
=ex (14 pz)(1+ ax)
=ex (1+ (8 +a)z)
Pour plus d’entrainement, voir exercice 1.

On considéere maintenant une fonction quelconque, au voisinage d’un point quelconque, qui
peut avoir une dimension.

Méthode 2 : Méthode de calcul des DLs dimensionnés au voisinage d’un point quelconque

On fabrique un parametre adimensionné zy < 1. On se ramene alors au cas des DLs
adimensionnés au voisinage de 0.

Exemple :
Champ gravitationnel au voisinage de la surface de la Terre :

Nous sommes, comme vous le savez, tres loin du noyau de la Terre, ce qui fait qu’a notre
échelle, le champ gravitationnel varie a peine. Si 'on veut estimer la maniere dont il varie, on
peut faire un DL. Cela nous donnera la pente de sa variation.

On crée une variable adimensionnée tres petite devant 1, en l'occurence % = =L,

Rr
GMy
90 =~y 1
GMrp h \—2
— 1 _
R ( +RT)

M
_ _GMy il (1 - 2i>
e <l R%

Pour qu’il diminue d"1%, il faut donc se placer a une hauteur h telle que

2h

_— = 1
Ry %
h ~ 32km

L’approximation d’un G uniforme est donc tres bonne a notre échelle. On sait aussi qu’en
valeur absolue, on surestime le champ de gravitation.

Bille sur un anneau en rotation :
Vous établirez en exercice (N°23) ’équation différentielle d’une bille astreinte a se déplacer

sur un anneau en rotation a la vitesse angulaire ) :

6= —% sin(#) 4 Q2 sin(#) cos()

ILy a, pour Q > Q.= \/%, 4 positions d’équilibre, 0, 7 et .4+ = iarcos(%ﬁ

a la stabilité de 6.44. On fera un DL a l'ordre 1 du terme de droite de l’équation differentielle

). On va s’intéresser
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pour savoir si cette position est stable ou non, et puisque c’est une position d’équilibre,
on ne s’embétera pas a calculer le terme constant, puisqu’on sait qu’il s’annule. On pose
e = 0 — 04 < 1. Cela va nous donner l'occasion d’apprendre a faire le DL a l'ordre 1 de
fonctions trigonométriques en un point quelconque. On a deux possibilités : soit on utilise les
formules d’addition de cosinus et de sinus : cos(a + b) = cos(a) cos(b) — sin(a) sin(b) et sin(a +b) =
sin(a) cos(b) 4 cos(a) sin(b), cela nous permet de nous ramener au voisinage de 0, soit on écrit
cos(0 + ¢) = cos(6) + cos'()e = cos(f) — sin(f)e. On fait le DL de chaque fonction individuellement
avant de réinjecter le tout dans l’équation.

sin(f) = sin(feq4 + €) = sin(feq ) cos(e) + cos(feq+ ) sin(e)

~ sin(0 0
% sin(Bgs) + c05(0eq)e

cos(0) = cos(Oeqt + €) = c05(feq+) cos(e) — sin(Beq+ ) sin(e)

2 c08(feg+) — sin(Beq)e

—% sin(f) + Q% sin() cos(f) = —N2 sin(h) + Q? sin(6) cos(6)
= (92 cos(#) — Q?) sin(h)

621 (QQ(COS(Geq-‘r) - Sin(eeq—i-)&') — Qg)(sin(96q+) + cos(@eq+)5)

= (2 co8(feqt) — 22) c08(Oeqs ) — Q2 sin? (B )e

2
= (QQ% — 02) c08(0eqr)e — Q*(1 — co5®(0eq))e

-2

4
Et comme Q > ., % < 1. Donc cette position d’équilibre est stable. On verra juste aprés que ce

DL veut dire qu’au voisinage de cette derniere, le systeme oscille a la pulsation w = Q4/1 — g—j

Propriété 3 : DL a l’ordre n, formule de Taylor

La formule générale suivante donne le DL a 'ordre n en un point quelconque de n’importe
quelle fonction dérivable n fois. Elle n’est pas a connaitre et est rarement utile.

1df (5)
@) = Z Kl daF |

Il est tout de méme important de la connaitre a l'ordre 2, car cela intervient dans le DL de
’énergie potentielle :

Flath) = f(@)+ fa)h+ 5 (a)h?

La méthode des DLs peut paraitre contre-intuitive initialement, c’est pourquoi il faut en
faire beaucoup, et vous avez pour cela un poly d’exos a votre disposition (voir exercices 2 a 5).
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2.2 L’équation différentielle i & w?z = 0

Maintenant qu’on sait comment se ramener au voisinage d’un point d’équilibre, il faut se
demander comment on résout l’équation différentielle qui en découle.

On peut donc mettre le probleme sous la forme
i+wlz=C (6)

+ pour les positions stables, — pour les positions instables.

La méthode pour résoudre une équation linéaire est toujours la méme :

Méthode 3 : Résoudre une équation différentielle linéaire

— Trouver la solution particuliere z,, c’est-a-dire la solution de la forme du membre
de droite, c’est-a-dire constante. On résout donc pour i = 0.

— Trouver la solution z;, de ’équation homogéne associée, c’est-a-dire celle ol on ne
garde que les termes en z, c’est-a-dire i + w?z = 0.

A la fin, ) i S A

— Finalement, on trouve les constantes en utilisant les conditions initiales sur x(t = 0)
et #(t =0).

Il ne reste plus gqu’a vous donner la solution au probléme
i+ wlz =0 (7)
Propriété 4 : Solutions de ’équation différentielle i + w?z = 0

F—w?lr=0 x(t) = Ae*t + Be ! = A’ cosh(wt) + B’ sinh(wt)
F+wlr=0  x(t) = Acos(wt) + Bsin(wt) = A’ cos(wt + ¢)

Remarques:

— C’est clairement la deuxieme, le cas d’une position stable, qui est la plus importante a
connaiftre.

— On a bien les comportements attendus, la position instable diverge et la position stable
reste bornée.

— Les solutions stables sont oscillantes. Ici, on n’a pas modélisé de pertes d’énergie (de
frottements), donc cela oscille indéfiniment. Dans la vraie vie, ces oscillations s’atténuent
sous l'effet de la dissipation énergétique.

— La fréquence d’oscillation vaut f = 21 et la période T' = %’r
™
. e’ +e " . er —e " . . , .
— Les fonctions cosh(z) = BT et sinh(z) = —y sont a connaitre, car cosh’(z) = sinh(z)

et sinh’(z) = cosh(z), ce qui est pratique car sinh(0) = 0 et cosh’(0) = 0. Cela fait que la
fonction cosh est sensible a la valeur initiale, et sinh est sensible a la dérivée intiale. cosh
est paire, sinh est impaire, elles sont donc utiles quand on a un systéme qui présente des
symétries. Il peut étre utile de savoir que cosh?(z) — sinh?(z) = 1.
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Exemple de solution stable

— Les solutions instables divergent, et sortent des proportions typiques du systéeme en un
temps typique 1

Exemple de solution instable

Cela veut dire qu’en un temps typique de l'ordre de %, 'approximation x trés proche de
xeq N'est plus valable.

La pulsation w est dite pulsation propre du systeme, elle est caractéristique du systéme
et ne dépend pas des conditions initiales. C’est pour cela qu’on dit que loscillateur est
harmonique.

Exemples :
Pendule simple :

L’équation mécanique du pendule simple est

0+ %sin(@) =0

Désormais, ce genre de choses ne vous fait pas peur! D’abord, le DL. On arrive a :

é+%9:0

On suppose qu’on part d’une position 6y sans vitesse initiale. La pulsation propre du pendule
est donc w = ﬂ. Voila un exemple ou la pulsation propre nous renseigne sur des propriétés
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intrinseques du systeme, c’est une partie de l'intérét de loscillateur harmonique. La solution

est de la forme
0(t) = Acos(wt) + B sin(wt)

Les conditions initiales sont (t = 0) = A = 6y, 0(t = 0) = Bw = 0, donc A = 6, et B = 0.
Finalement,
0(t) = 6y cos(wt)

Et vous comprenez comment on peut faire une mesure de g avec un pendule! La période T
des oscillations est 27r\/g.

Quasi-ressort :

On suppose qu’une masse m est soumise a une force de la forme F(z) = —mw?(z — a*/23)
dans la région x > 0. On se retrousse les manches et on y va. Position d’équilibre? On résout
pour F(z.,) =0, on trouve z., = a. On veut savoir si c’est stable ou non, on fait un DL.

at

F(zeq+¢e) = —mw%(a—}-S— m>

= —mw%(a—i—e— ﬁ)

2 —mw? (a +e—a(l- 3€/a))

= —4muwic

C’est stable! C’est aussi une bonne legon : quand on fait un DL de la force au voisinage de
la position d’équilibre, on sait que le terme constant s’annule, on n’a donc pas besoin de le
calculer (puisque la force s’annule au niveau d’une position d’équilibre). Au voisinage de la
position d’équilibre, on a donc

T=%Teqg+E=E€
mi = F(eq +¢) = —4mwic

Donc :

E+ (2w)?e=0

La pulsation est donc 2w;. Pour plus d’entrainement de ce genre, voir exercices 23, 26 et 27.

2.3 Leressort

On sait donc que tout systéme mécanique, au voisinage d’une position d’équilibre stable,
est équivalent a un systeme percevant une force F(z) = —k(z — z¢). Il se trouve que c’est
’équation constitutive d’un ressort.
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Propriété 5 : Force de rappel d’un ressort

Un ressort exerce une force F en fonction de sa longueur [ :
F = —k(1 — lo)i (8)

Avec #; un vecteur unitaire (de norme 1) parallele au ressort et orienté dans le sens

d’augmentation de la longueur I. k est appelée la constante de raideur du ressort et [
est appelée la longueur a vide.

Pour un ressort réel, un ordre de grandeur de k est 50Nm~! (pour un ressort utilisé en TP).

L’oscillateur harmonique est la raison pour laquelle on voit des ressorts partout en mé-
canique, il s’agit de la linéarisation de la force au voisinage d’une position d’équilibre stable.
C’est en particulier la force exercée par un élastique au voisinage de sa position d’équilibre.
On parle de force élastique.

i l
F

On fait quasi-systématiquement ’hypothése que le ressort est idéal, c’est-a-dire sans
masse. En effet, 'expression de la force exercée par un ressort sous-entend qu’a tout moment,

il est étiré exactement suffisamment pour compenser la force qu’on applique sur lui : cela
suppose qu’il n’ait pas d’inertie. Sinon, la déformation est une onde mécanique qui se propage.

Exemple :

Systeme masse-ressort :

Une masse m est posée sur une table attachée a un ressort de longueur a vide [y et de

raideur k. On suppose qu’elle peut glisser sans frottements. L’équation du mouvement est
alors, selon z,

k
i+ —x=0
m

La pulsation propre est donc w = ,/%.
Si on met la masse a la verticale, ’équation devient alors

L,k
T+ —r=9g
m

Donc la position d’équilibre est alors z., = 2.

Pour plus d’entrainement autour du ressort, voir exercices 6 a 11 et 15 a 17.
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3 Energie et oscillateur harmonique

Vous le reverrez en mécanique, mais 'un des théoremes fondamentaux de la mécanique
est le théoreme de l’énergie mécanique (TEM). On ’écrit ici dans le cas particulier ou les forces
sont conservatives. Qu’est-ce qu’une force conservative ? Vous le verrez en mécanique. Ici, on
ne s’en soucie pas, car en une seule dimension, si la force dépend de la position uniqguement,
elle est conservative. On a donc :

E.+ E, = cste (9)
ou .
E.= 5?711)2 (10)
Et
Définition 1 : Energie potentielle
x
JB) = —/F(x)da: (11)

N’ayez pas peur de lintégrale! Pour le calcul, il s’agit uniqguement d’une primitive. C’est-
a-dire que [* F(x)dz est une fonction dont la dérivée vaut F(z). Pour un mondme z", une
primitive est “;:fll, et la primitive de sin(z) est — cos(x). Vous pouvez vérifier que 'on retrouve
le PFD en dérivant le théoreme de l’énergie mécanique.

On a donc
_dEp

F(z) = o

(12)
Cela veut dire que
Propriété 6 : Sens de la force

La force pointe dans la direction de diminution de [’énergie potentielle

Et aussi que l'énergie potentielle est définie a une constante pres. Dans la suite, on
omettra donc savamment toutes les constantes. Voici les deux énergies potentielles qu’il faut
connaftre :

Energie potentielle de pesanteur (pour un axe z orienté vers le haut) :
E,, = mgz (13)
Energie potentielle d’interaction élastique :
Epe = %k(l —lp)? (14)
Tout ¢a pour dire qu’on a une deuxieme équation dont la solution est un oscillateur harmonique

(notre combinaison de cos et de sin) :

1 1
§m9b2 + imwz(x — x0)% = cste (15)

Cela n’est pas a connaitre, mais il faut simplement se souvenir que lorsqu’on voit une équation
de la forme 4% + w?2? = cste, il faut penser a dériver.
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Méthode 4 : Equations différentielles quadratiques

Si on a une équation différentielle de la forme
#2 4+ V(z) = cste (16)

Que l’'on sait difficilement résoudre, il faut penser a dériver. C’est le passage entre le
TEM et le PFD.

C’est encore une raison pour laquelle U'oscillateur harmonique est extrémement important
en physique : il couple f et f/ de maniere symétrique. Quand vous étudierez la mécanique
analytique, on étudie les coordonnées (p, ¢), avec p la quantité de mouvement, et ¢ la position. Le
couplage entre ces deux variables est symétrique dans l’énergie pour un oscillateur harmonique.
Et c’est l’énergie, qu’on appelle le Hamiltonien, qui permet de trouver les équations du
mouvement.

Exemple :
Fibre a gradient d’indice :

On se place dans une fibre optique, c’est-a-dire un cylindre constitué d’un cceur transparent
et d’une ame réfléchissante :

On suppose que lindice optique varie en fonction de la distance a l’axe central de la fagon

suivante :
\/ A
= 1 —-2A— 17
n(r) = ng 2 a7)

On cherche r(z). On admet la loi de Snell-Descartes en continu :
n(r)sin(f(r)) = ngsin(fy) (18)

On la retrouve en faisant un raisonnement infinitésimal, de proche en proche.

r

air n(r)

o
0]

i

Que vaut sin(f(r)) ? Faisons un schéma.
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Vdz? + dr? p
”

5—0 dz

En appliquant le théoréme de Pythagore, on trouve que sin(4(r)) = W;ﬁdrz = \/1+1/( o

L’équation différentielle est donc

1 .
n(r)TI(Z)2 = ngp sin(6p)

n(r)’ ,
Ty~ oS

n(r)* = ndsin?(0p) (1 + '(2)?)

2 T2 2 . 9 / 2
ng (1 - 2Aa—2) = ng sin”(6o) (1 + r'(2)7)

2
. r .
sin?(0o)r’ (2)* + QAE =1 —sin?(6p)

7'/(2)2 + 24 r? = cos? (6)

sin?(fp)a? sin?(fo)
Avec k = Sin(\/%j , on retrouve :
o)a
P2 4 k22 = COSQ(QO)
Sin2(90)

Donc la solution est de la forme :

r(z) = Acos(kz) + Bsin(kz)

cos?(6p)
sin?(6p) *

On a pour conditions initiales r(z = 0) = 0, r?(z = 0) = La solution est donc finalement

de la forme
= ———sin(kz)

Pour plus d’entrainement autour du lien TEM-PFD, voir exercice 30 et probléme 3.

3.1 Energie, équilibre et stabilité

On a donc un systéme caractérisé par une énergie potentielle £,(z) et une force F(z) = —%.

Toutes nos discussions sur les équilibres s’appliquent! Il ne reste qu’a transposer tout ga.
Equilibre
Il s’agit donc d’un point d’annulation de la force, donc de la dérivée de ’énergie potentielle.
C’est-a-dire :
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Propriété 7 : Equilibre et énergie
Un point d’équilibre est un extremum local de l’énergie potentielle.

Stabilite

Supposons que la position d’équilibre soit stable. La force est donc décroissante. Cela

veut dire que pour x > xq, F(z) = —% < 0, donc ’énergie potentielle est croissante pour

xr > zoq. De méme, pour z < z¢q, F(x) = —% > 0 donc ’énergie potentielle est décroissante

pour x < xeq. DONc
Propriété 8 : Equilibre stable et énergie potentielle

Un point d’équilibre stable est un minimum local de [’énergie potentielle.

De méme :

Propriété 9 : Equilibre instable et énergie potentielle
Un point d’équilibre instable est un maximum local de U’énergie potentielle.
Exemple :

Pendule simple :

L’énergie potentielle du pendule simple est
E, =mgz

Que vaut z ? Faisons un schéma pour le voir.

lcos(6)

Donc z = —lcos(f). D’ou :

E, = —mgl cos(0)

Représentons cette énergie potentielle :
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—27 - 0 T 2t 0
Energie potentielle de pesanteur en fonction de 6.

Ily a donc un position d’équilibre instable, § = 7, et une position d’équilibre stable (que l'on
attendait bien), # = 0, comme on ’a déja vu.

Pour plus d’entrainement sur les liens entre énergie est stabilité, voir exercices 18, 24 et 25.
Voisinage d’une position d’équilibre
On a vu gu’au voisinage d’une position d’équilibre, on a

~ &

F ~ —
(@)~ T @)
Cela devient, en termes d’énergie potentielle :
dE, d*E,
E - d(L‘2 r=x0 (:C B xO)

En primitivant une fois, on trouve que l'on a fait le DL a Uordre 2 de l’énergie potentielle,
c’est-a-dire qu’on l’a parabolisée :

_1d°E,

P9 dy2 (z — 20)” (19)

T=x0

Se ramener a l'oscillateur harmonique, c’est linéariser la force, et c’est aussi paraboliser
’énergie potentielle.

Et finalement on a une deuxieme condition énergétique pour la stabilité des positions
d’équilibre :
Propriété 10 : Stabilité et énergie potentielle

2
Un point d’équilibre est stable si et seulement si ddf;’ > 0.
T=Teq

Exemple :
Pendule simple :

On se rappelle qu’on a E, = —mglcos(f). On fait le DL a lUordre 2 en voisinage de O :
E, = imglo? (en faisant disparaitre la constante). L’énergie cinétique est E. = muv? = Lmi?¢2.
Donc l’équation différentielle est :

0% + %92 = cste

On retrouve w = /9.

Pour explorer le DL a Uordre 2 de ’énergie potentielle, voir probleme 1.
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4 Aller plus loin que Poscillateur harmonique

On va maintenant regarder deux phénomenes qui utilisent Uoscillateur harmonique, en le
rendant encore plus riche.

4.1 Oscillateurs couplés

Rien ne sera démontré ici, pour les démonstrations, voir ’exercice 12. Pour une illustration,
voir https ://www.youtube.com/watch ?v=YyOUJUOUvso

Les oscillateurs couplés tombent au test de présélection, et avoir quelques connaissances
dessus peut vous faire gagner énormément de temps. On considére donc deux oscillateurs
harmoniques identiques (par exemple deux systémes masse ressort avec la méme raideur et
la méme longueur a vide, ou deux pendules simples de méme longueur). On leur associe donc
une pulsation propre wy. On les couple a l'aide d’un oscillateur, typiquement un ressort, de
raideur &’ et de longueur a vide [y. Exemple :

lo

Ce systeme a 2 modes propres.
Mode symétrique

Il s’agit du mode ou, a une constante pres, la position de loscillateur 1 est égale a la
position de loscillateur 2 :

C’est le mode ou l'oscillateur de couplage reste a sa longueur a vide. La pulsation de ce
mode propre est donc wy : il N’y a pas de transfert d’énergie entre les deux oscillateurs. On
prépare ce mode en imposant comme conditions initiales la méme différence par rapport a la
position d’équilibre pour les deux oscillateurs.
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Mode antisymétrique

Il s’agit du mode ou, a une constante pres, la position de U'oscillateur 1 est 'opposée de la
position de l'oscillateur 2 :

La pulsation de ce mode, w; est nécessairement plus grande qu’ wyp : on peut le voir sur cet
exemple, quand les pendules s’écartent, le ressort les retient, ce qui diminue le temps d’une
période, augmentant w. Mais plus généralement, la pulsation d’un oscillateur est toujours

croissante de la force qu’il subit (,/% est croissant de k&, ﬁ est croissant de g), et on

impose une force supplémentaire, cela fait donc augmenter la pulsation propre. Sa valeur
exacte dépend de la situation. Pour la calculer, on pose les équations du mouvement, puis
on les simplifie en supposant que le mode est antisymétrique. Dans ce mode, l'oscillateur de
couplage emmagasine périodiquement de l’énergie, puis la rend de maniere symétrique aux
deux oscillateurs. On prépare ce mode en imposant comme conditions initiales une différence
opposée a la position d’équilibre pour chacun des oscillateurs.

LN
N

La raison pour laquelle on étudie ces deux modes est que la solution générale est une
superposition de ces deux modes propres, donc une superposition d’oscillations a wy et a w.

Faible couplage : phénoméne de battements

Si le couplage est faible, c’est-a-dire que l'oscillateur de couplage a une pulsation propre
tres faible devant la pulsation propre des deux autres oscillateurs, la pulsation w; du mode
antisymétrique est trés proche de wy (quand il y a trés peu de couplage, on doit se rapprocher
de la situation ou il n’y a pas de couplage). La solution générale est donc une somme de deux
oscillations proches, ce qui donne lieu a un phénomeéne de battements.
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M-
(e e

La fréquence rapide est donc environ wy, et la fréquence des battements est |w; —wy| = w1 —wy,
qu’on peut généralement simplifier a aide d’un développement limité. On les observe en ne
déplagant initialement qu’un des deux oscillateurs de sa position d’équilibre. Ils sont alors
en opposition de phase entre les deux oscillateurs, le ressort permet un transfert d’énergie
périodique entre les deux oscillateurs.

Les oscillateurs couplés sont abordés dans les exercices 13 et 14.

4.2 Oscillateur harmonique amorti

Je ne pense pas que la connaissance des solutions exactes soit vraiment dans U'esprit des
IPhOs, sachant qu’aux épreuves internationales ils rappellent la solution pour les équations
# — w?x = 0, et que c’est vraiment du travail technique de Bac+1. Cependant, l'oscillateur
harmonique amorti est mentionné dans le syllabus, il est donc nécessaire d’avoir quelques
connaissances qualitatives dessus.

On a dit que loscillateur harmonique ne prenait pas en compte les frottements. Nous
allons désormais examiner ce qui se passe quand on rajoute un terme de frottements. Pour
des mouvements suffisamment lents, on peut considérer les frottements les plus simples
possibles, c’est-a-dire des frottements linéaires, en —\v. On est donc ramené a l’équation
différentielle :

y'c'—l—%a'c—i—wga::o (20)

Q est appelé le facteur de qualité du systeme. Plus il est grand, plus on se rapproche de
loscillateur harmonique. Plus il est faible et plus 'amortissement est fort.

On dit qu’elle est sous forme canonique. Si elle ne l’est pas, on la met sous cette forme.

Exemple :

Le circuit RLC série : On considéere le circuit suivant :

R L
[ ] /5000

B TC) Ut ——c

i(t)A

L’équation différentielle est :

. R. 1 E
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On remarque tout d’abord que pour R =0, le circuit est un oscillateur harmonique. Le circuit

LC est un oscillateur harmonique classique qu’il faut connaitre (cf le cours d’électrocinétique).

On cherche a la mettre sous forme canonique. On voit que wy = —~—. On cherche ensuite Q tel

VLC®
que :

I =

“o _
5=

Q_%_ L _1/L
R RJVILC C

On se ramene bien a la forme canonique d’une équation du second ordre.

Comme vous le verrez en 5.1.1, pour résoudre l’équation différentielle, il faut résoudre
’équation caractéristique :

wo

Qr+w§:0 (21)

r? 4
Il y a donc trois régimes, a connaitre.
Régime apériodique, () < 1/2

Si Q < 1/2, lamortissement est si fort que le systéme n’a pas le temps d’osciller. Le régime
est donc apériodique.

Les solutions sont les suivantes :

Propriété 11 : Régime apériodique

1 1/w [1

Les solutions sont de la forme :

x(t) = Ae~t™ 4 Bemt/m (23)

Régime critique, également apériodique, ) = 1/2

Le régime est également apériodique, la forme mathématique des solutions est simplement
différente.

Propriété 12 : Régime critique

z(t) = (At + B)e 0! (24)
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Régime pseudo-périodique, ) > 1/2

Si @ > 1/2, lamortissement est suffisament faible pour que le systeme oscille. Cependant
’amortissement fait tendre la solution vers 0.

T

A
VY |

Les solutions sont les suivantes :
Propriété 13 : Régime pseudo-périodique
O =wp4/1—

T =2Q/wp

1
4Q2
z(t) = e /7 (A cos(Qt) + Bsin(Qt)) (25)

Et maintenant les choses vraiment importantes a connalftre :

— Les solutions oscillent a une pulsation Q < wyp, d’autant plus proche de wy que @ est grand.
Le terme de frottements ralentit le systéme, il est donc normale que sa pulsation soit
plus faible que sa pulsation sans frottements, et plus 'amortissement est faible, plus on
se rapproche de la pulsation sans frottements.

— Le facteur de qualité est de l'ordre de N, le nombre d’oscillations visibles. Par exemple,
pour la courbe ci-dessus, Q ~ 5.

— Moins important a connalitre : pour une estimation plus précise ), on peut utiliser
le décrément logarithmique, 6 = ln( ), avec z; et z9 deux maxima successifs. On a

z1
T2
approximation § ~ %

L’oscillateur harmonique amorti est traité dans les exercices 29 et 33.

5 Bonus
Le contenu de cette section est purement pour votre culture, rien n’est a connaitre.
5.1 Résoudre une équation différentielle linéaire

5.1.1 Systémes d’équations linéaires

En 2025 dans le test de présélection francais des IPhOs, sujet pour terminales, il fallait
résoudre le systeme d’équations différentielles couplées suivant sur deux intensités électriques
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Iy etr:

1 2 2, _ﬁ é
dz? d} d3
L _L_I
de? d3 42

Dans le cas d; = d2 = d, avec comme conditions aux limites I;(0) — I2(0) = I,(L) — I>(L) = Iy,
I;(0)+15(0) = I (L)+I2(L) = Iy. On va donc voir quelques méthodes pour résoudre des systemes
d’équations différentielles linéaires couplées dans des cas simples.

Vous remarquerez que quand d; = dy = d, le couplage entre I et I, est symétrique; c’est-a-
dire que le contenu de la deuxieme équation se déduit de la premiére en échangeant les réles
del;et]:

I, I I
dz? A2 d?
I, I, I
dz? A d?

Dans le cas d’un systéeme d’équations différentielles a couplage symétrique :

d2
d2

Poser S=f+get D= f—g. Les équations obtenues sur S et D sont alors découplées.
Cette méthode fonctionne aussi si le systeme est d’ordre 1. La présence de constantes
dans les équations ne doit pas changer la méthode, cela impliquera simplement des
constantes dans les équations différentielles découplées, qui peuvent étre traitées
comme n’importe quelle équation avec second membre.

Exemple :

Reprenons notre systéeme dans le cas symeétrique :

I, I I
dz? A2 d?
I, I, I
dz? &2 d?

Soit S=11+1, D=1 — .

d2s A2, &I 1
- — (W4 h-1 D)=
dx? dx? + dx? d2( Lt ! 2)=0

d?*D  d?I,  d?I, 1 2
= — = (L -L—-I,+I1)==D
Az de? da? d2< 1-h-hth)=5

Donc S(l‘) =Ax+b,b= 11(0) + IQ(O) =1y, AL+b= Il(L) -+ IQ(L) = Iy, donc S(l‘) = Iy.

D(z) = AeV2/d 4 e=V2r/d D) = A+ p = Iy et AeV2L/d 4 pe~V2L/d — [, Donc D(z) =

1+ef3§L/d <6_\/§x/d + eﬁ(x_L)/d)'
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Ii(z) = S(z) + D(z) _ lo (1 N ;(6_\@/@1 n eﬁ(x_L)/z))

_ S(z) — D(x) @(1 1

(e )

Si le systéme est a couplage antisymétrique, on passe par les complexes :

Un systéme a couplage antisymétrique est de la forme suivante :

a2 f
el
d2g
prciaall

On pose alors u = f + ig. On obtient une équation différentielle sur u que 'on peut
résoudre avec les méthodes vues plus haut. Cette méthode marche aussi pour les
systéemes d’ordre 1.

Exemple :
Particule chargée dans un champ magnétique uniforme :

Si on considere une particule de masse m et de charge ¢ dans un champ magnétique
By = Byii,, les équations du mouvement sont :

= wey
{j/' =—WT
Et 2 = 2y, avec w, = —qmﬂ
Soitu=x+iy. i =7+ 1§ = WY — Wed = —iwe(T + 1Y) = —iw,a.
u(t) = dge” et

u(t) = 200 giwet o
We

La projection du mouvement dans le plan z = 0 est circulaire uniforme de rayon 2, de pulsation
w. et de centre ¢.
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5.1.2 Equations différentielles linéaires d’ordre n a coefficients constants

Propriété 14 : Equations différentielles homogénes a coefficients constants

Si vous avez une équation linéaire homogene (c’est-a-dire sans second membre, avec
. k
uniqguement des termes en %) d’ordre n, de la forme
dnf dn—lf df

il dxn_1+---+a1%+aof:0 (26)

les solutions sont de la forme
F@) = M o A

avec rq,...,r, les racines du polynéme caractéristique P = X" +a,, 1 X" ' +-- - +a1 X + ao.

Cela n’est vrai que si toutes ces racines sont distinctes, mais un peu de topologie et de
théorie de la mesure nous permet de dire que les racines sont presque toujours distinctes,
c’est-a-dire que la probabilité que ce ne soit pas le cas est nulle. Malgré tout, des cas
théoriques peuvent nous amener a devoir prendre en compte ce cas expérimentalement
inatteignable.

Il faut donc parler de la multiplicité des racines. Une racine r de P est de multiplicité m si
’'on peut factoriser P sous la forme P = (X —r)™Q(X) ou Q(r) # 0. Une autre caractérisation
est que r est de multiplicité m si P et ses m — 1 premiéres dérivées s’annulent en r (P(r) =
P'(r)=---= P (r) = 0), et que P (r) £ 0.

Propriété 15 : Formule générale

Si rq,...,r; sont les racines du polyndme caractéristique, de multiplicités respectives
mq,...,my, alors les solutions de ’équation homogene sont de la forme

f(z) = )\1706T1z+>\171$€mx+)\172$26nx—|—' . -+)\17m1xm_16”x+)\2706T2m+)\271xer2m+- . '+)\lymlxm’_le”z

l ml—l

f(z) = Z Z Ak sz e 27)

k=1 s=0
Ces racines sont souvent complexes, mais ¢a ne pose aucun probleme, on se ramene au
cas réel a l'aide des conditions initiales.

Dans le cas de l'oscillateur harmonique, on a
P2 = 2
Donc r = +iw Ainsi les solutions sont de la forme
f(t) = Ae™' 4 Be~ ™t
= A(cos(wt) + isin(wt)) + B(cos(wt) — isin(wt))

Pour les équations avec second membre, soit

d,
T +~-+a1£+aof:g(x) (28)
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On cherche toujours une solution particuliere pour ’additionner a la solution de ’équation
homogéene. La solution particuliere doit étre cherchée de la méme forme que le second
membre : polynbme de degré d si g est un polynébme de degré d, combinaison linéaire de
cosinus et sinus si g U'est aussi, un polyndme de degré d fois une exponentielle si g est de
cette forme...

Et a la fin, on détermine les constantes avec les conditions initiales sur f et ses dérivées
d’ordretan—1.

Exemple :
Résolvons ’équation différentielle suivante :
&*f df df
FrEE PO A
De conditions initiales f(0) =1, f/(0) =0, f”(0) = 0.

L’équation homogene associée est

af  dAf df
T A N
da3 + dez? dzx

L’équation caractéristique est :
Prr?—r—1=0

(r*=1)(r+1)=0
(r—D(r+12=0
Donc la solution homogéne est f;(z) = \e® + (u + vx)e ™.

La solution particuliere est de la forme du second membre, donc polynémiale d’ordre 1, on
prend donc f, de degré 1. f,(z) = ax + b, on réinjecte f, dans ’équation différentielle.

—a—ar—b=ax+1

—ar —(a+b) =azr+1

Donc a = —a et b = o — 1. Finalement, f(z) = fu(z) + fp(z) = A + (n+vx)e ™ —ax +a — 1. On
résout ensuite le systeme posé par les conditions initiales pour trouver \, p et v.

A p =2—-«
A—p v =«
A+ pu—2v=20
Finalement, on a :
)\:a+2vuz6—5a’1/:2—a
4 4 2

Le piége de Penning :

On souhaite piéger un électron en (0,0). Le plus simple serait avec un champ électrique,
puisque l’énergie potentielle est alors E, = —eV (z,v, z). Il suffirait d’avoir un potentiel électrique
dont le maximum serait en (0,0). Cependant les équations de Maxwell, précisément l’équation
de Poisson, rendent ce fait impossible. En effet :

0%V N 0%V N O’V 0
ox?  Oy2 022
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Si V admettait un maximum, ce serait un maximum dans toutes les directions, donc il faudrait
. 92 2 92 . . . .
avoir %7‘2/, %T‘{, %Z‘{ > 0 en ce point, ce qui est donc impossible. On veut donc commencer par le
piéger dans le plan z = 0. On choisit un potentiel de la forme V (z,y, 2) = B (22 + y? — 22%) (qui
0
respecte ’équation de Poisson) avec 1 > 0. On voit que (0,0) est un maximum de V dans la
direction z. Cela donne une force :

Fe _ef— 2N

—2z

Puisque l'on peut déja stabiliser l’électron dans la plan z = 0, on ne va s’intéresser qu’a z et y.
Le piege de Penning consiste a introduire un champ magnétique By = Byi,. On obtient alors
’équation différentielle suivante sur u =z + iy :

il + wett — wiu = 0

2eVp

Avec w, = — €20 gy = 0. L’équation caractéristique est :
€ 0

Tzﬁ—a@r——u% =0

de discriminant : A = —w? + 4w?. Si A > 0, une des racines est r = (iw, + VA), de partie réelle
strictement positive, donc ¢’ diverge. Il faut donc, si 'on veut confiner l’électron, avoir A <0,
i.e. we. > 2wp. La solution est donc de la forme :

u(t) = AesweVIADE 4 o5 (—wety/1ADE

On suppose qu’on a comme conditions initiales u(t = 0) = dy et u(t = 0) = ivy. Cela donne le
systeme :
A+ © = do
1

5 (—we = VIADA + 5 (~we + VIA] = ivg

Que l'on peut résoudre pour obtenir les équations horaires. Il s’agit de la somme de deux
rotations, a deux pulsations différentes, possiblement dans deux sens opposés, mais de méme
centre. L’électron reste donc confiné dans le voisinage de (0,0), alors méme qu’il ne s’agit pas
d’un minimum de ’énergie potentielle.

2.0

1.5

1.0+

0.5 4

0.0

—0.5

-1.0

-1.5

—-2.0 4

T T T T T
-1.0 -0.5 0.0 0.5 1.0

Mouvement d’un électron dans le piege de Penning
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5.2 Oscillateur harmonique en mécanique quantique

En mécanique classique, ’énergie d’un oscillateur harmonique est fixée par les conditions
intiales, et peut donc aller continlment de 0 a +co. En mécanique quantique, les niveaux
d’énergie sont quantifiés, et valent, pour Uoscillateur harmonique :

En:hw<n—|—%) :Iw<n+%) (29)

avec w la pulsation propre de l'oscillateur (la méme qu’en mécanique classique). Ce qu’il est
intéressant d’observer est que ’énergie minimale n’est plus 0 mais %hu, gu’on appelle énergie
de point zéro. Cette énergie est particulierement importante. En effet 'une des idées de
’électrodynamique quantique est que le champ électrique est un ressort, ce qui veut dire que
méme le vide a [’énergie d’un demi photon. C’est par exemple trés important pour le calcul de
’effet Casimir, qui décrit la force attractive entre deux plaques conductrices dans le vide.

5.3 Energie et oscillateur harmonique en 3 dimensions

Supposons que nous ayons une énergie potentielle E,(z,y, z). La condition d’équilibre est
que la force s’annule en un point (zg, yo0, 20). Cela veut dire qu’une position d’équilibre est un
extremum de l’énergie potentielle. La stabilité vient de la méme condition : 7y = (z9, yo, 20) doit
étre un minimum de U’énergie potentielle. Mathématiquement, voyons comment cela se traduit.
Le DL a l'ordre 2 de ’énergie potentielle s’écrit :

L . - N T 7
E,(ro+ h) = Ey(ro) + VEL(10) - h + §h ~Hpg,(r0)h (30)

OU h est un petit paramétre, avec
)

-~ 5%
VE, = | 2L

0’E, 0°E, O%Ep
Ox2 0xdy  0zx0z

H— 0’E, 0°E, O%Ep
oxdy  Oy? 8%/82
0°E, 0°E, O°E,

0xdz  Oyoz 0z2

Hpg, () est donc une matrice, HEP(FO)E se calcule avec les regles du calcul matriciel. Si vous
ne l’avez pas vu cela ne fait rien, personne ne vous demande de faire des calculs, tous ces
détails sont la pour votre culture uniquement. Hg, est symétrique, car d’apres le lemme de
Schwarz :

O*E, 0°E,

2:0; 00
Le terme ﬁEp(FO) .h est d’ordre 1 en £, et le terme %ﬁ : HEP(T?))E est d’ordre 2 en h. Pour que
7o soit un point d’équilibre, il faut que ce soit un minimum de U’énergie potentielle, ce qui
implique que

VE,(7) =0
Cette condition correspond a l’'annulation de la force en ce point. Il faut également que pour
tout h € R3, h- Hg, (79)h > 0. Cela correspond a ce que Hp, () soit "définie positive", ce qui se
démontre en trouvant les racines d’un polynéme :

*Ep, A 0%E, 0%E,
8:522 28x8y 32;B(9z
_ 0%E,  0°E, 02E,
XHEP ()\) = det Oxdy oy2 A dyoz
0%E, 0%E, 0’E, A
0xdz Oyoz 0z2
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Hp, est definie positive si et seulement si toutes les racines de ce polyndme sont strictement
positives. Le théoréme spectral nous indique qu’il existe une base orthonormée (i, iy, u.’)
telle que Hg, (7o) exprimée dans cette base soit diagonale.

kk 0 0
HEp (7?0) = 0 kg 0
0 0 ks

OU ki,ko et k3 sont les racines de XHg,» toutes strictement positives. Le DL de ’énergie
potentielle s’écrit alors :

- 1
E, (7o + h) = Ep(7o) + 5(lclgcﬂ + koy'? + k32"?) (31)

OU i = (¢',4/,7') Ce qui donne une force :

kl.%'/
F(ro +h) = — | kay/ (32)
kgzl
Ce qui donne le systeme d’équations :

mi’ =—kia'
mij =—koy
o/ /
mZzZ =—ksgz

On a donc un oscillateur harmonique a une dimension sur chaque axe du repére, chacun a des

pulsations différentes w; = \/%, que ’on sait résoudre. On retrouve le cas d’un ressort si 'on
suppose que la force est isotrope (la méme dans toutes les directions).

Préparation aux olympiades — version 2025-26 - contributeur : Mathurin Rouan
Sources des figures : X Physique SI 2017 &
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