
The career of a young theoretical physicist consists of treating the harmonic oscillator in
ever-increasing levels of abstraction.

– Sidney Coleman

L’oscillateur harmonique touche à toute la physique. Comme vous le verrez dans les
exemples, cela nous amènera à examiner de nombreux domaines, thermodynamique des
trous noirs, optique, biophysique, électrocinétique, électrodynamique quantique et bien sûr,
mécanique. Il s’agit de regarder les systèmes physiques proches de leurs positions d’équilibre
et d’en déduire des propriétés sur ceux-ci. Shall we ?

1 Stabilité des équations différentielles

Les systèmes physiques sont régis par des équations différentielles. Il est donc naturel
qu’on s’intéresse à la stabilité des quantités régies par des équations différentielles, parce que
c’est le langage de la physique. Ici, x est une quantité quelconque, cela peut-être la position,
la vitesse, la concentration, le potentiel, l’angle... On va s’intéresser surtout à de la stabilité
temporelle, d’où la notation ẋ(= dx

dt ), mais cela s’applique à toutes les dépendances (comme la
position).

On se restreindra aux équations suivantes, qui sont celles qu’on rencontre presque tout le
temps en physique :

ẋ = f(x) (1)

Équation différentielle d’ordre 1, et
ẍ = f(x) (2)

Équation différentielle d’ordre 2.

Où f est une fonction quelconque.

1.1 Positions d’équilibre

Quelles sont les positions d’équilibre ? Comment les trouver ? Et bien un position d’équilibre
est un endroit où l’on peut rester indéfiniment. C’est-à-dire une position telle qu’il n’y ait pas
de mouvement. En ce point, on doit donc avoir ẋ = 0 et ẍ = 0 .

Une position d’équilibre est un zéro de f , c’est-à-dire un point où f passe par l’axe des
abscisses.

Exemples :

Pendule simple :

1/30

L’oscillateur harmonique



Physicité L’oscillateur harmonique

z

O

l

m

θ

g⃗

L’équation du pendule simple est :
θ̈ +

g

l
sin(θ) = 0

Donc les deux positions d’équilibre sont les θeq tels que g
l sin(θeq) = 0. Doncsin(θeq) = 0, c’est-

à-dire θeq = 0 ou θeq = π. On attendait la première position d’équilibre, mais θ = π est plus
surprenant. On verra par la suite qu’elle est instable, ce qui est conforme à ce qu’on peut
attendre.

Rotation de l’ATP-synthase :

La molécule de l’ATP-synthase est constituée d’une partie immobile, le stator, et d’une
partie pouvant se mettre en rotation autour du stator, le rotor. Sa rotation propre est donnée
par l’équivalent du principe fondamental de la dynamique (PFD) en rotation, le théorème du
moment cinétique :

Jθ̈ = α− kθ
(
1− θ1√

θ2 + θ20

)
Représentons la fonction θ 7→ kθ

(
1− θ1√

θ2+θ20

)
, pour un grand θ1.

Pour l’équilibre, on veut

α = kθeq

(
1− θ1√

θ2eq + θ20

)
On a donc trois possibilités en fonction de la valeur de α.
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α

Dans ce cas, une position d’équilibre.

α

Dans celui-ci, trois.

α

Dans ce dernier, une seule.

1.2 Stabilité des positions d’équilibre

La notion de stabilité est un peu plus fine. L’idée est que si une position est stable, on va
y revenir quoi qu’il arrive. Et si elle est instable, au moindre coup de vent on s’en éloignera
substantiellement.

On suppose qu’on a une position d’équilibre x0. La précision parfaite n’existe pas, il y aura
donc quoi qu’il arrive des variations autour de cette position : imprécision de l’expérimentateur,
coup de vent, agitation thermique, et, si on est vraiment fou, fluctuations quantiques. On note
donc ε la petite variation que subit le système autour de sa position d’équilibre.

Supposons que f soit croissante.

-Si ε > 0, x = x0 + ε > x0, donc f(x) > f(x0) = 0 donc ẋ > 0 ou ẍ > 0. Donc x a tendance à
augmenter, donc à s’éloigner d’autant plus de la position d’équilibre.

-Si ε < 0, x = x0 + ε < x0, donc f(x) < f(x0) = 0 donc ẋ < 0 ou ẍ < 0. Donc x a tendance à
diminuer, donc à s’éloigner d’autant plus de la position d’équilibre.
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Propriété 1 : Équilibre instable

Donc si f est localement croissante, la position d’équilibre est instable.

x

f

x augmente

Donc f devient positive

Donc x augmente

Supposons que f soit décroissante.

-Si ε > 0, x = x0 + ε > x0, donc f(x) < f(x0) = 0 donc ẋ < 0 ou ẍ < 0. Donc x diminue, donc
se rapproche de x0.

-Si ε < 0, x = x0 + ε < x0, donc f(x) > f(x0) = 0 donc ẋ > 0 ou ẍ > 0. Donc x augmente, donc
se rapproche de x0.

Propriété 2 : Équilibre stable

Donc si f est localement décroissante, la position d’équilibre est stable.

x

f

x augmente

Donc f devient négative

Donc x diminue

Ces résultats ne sont pas à connaître par cœur, mais les raisonnements et les dessins sont
à savoir refaire.

Exemples :

Pendule simple :

On reprend l’équation du pendule simple :

θ̈ = −g

l
sin(θ)

sin est croissante au voisinage de 0, et décroissante au voisinage de π. θ = 0 est donc une
position d’équilibre stable, et θ = π est une position d’équilibre instable. Ces deux résultats
sont attendus.

•
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Pour θ = π, si θ diminue un peu, le poids a une composante non-nulle négative selon u⃗θ,
donc le poids a tendance à faire diminuer θ, ce qui fait tomber la masse.

•

Pour θ = 0, si θ augmente un peu, le poids a une composante non-nulle négative selon u⃗θ,
donc θ a tendance à diminuer.

Équation différentielle linéaire d’ordre 1 :

L’équation
dx

dt
= kx

admet 0 pour unique position d’équilibre et est stable pour k ⩽ 0, instable pour k > 0.

Rotation de l’ATP-synthase :

La pente de la fonction de droite dans

Jθ̈ = α− kθ
(
1− θ1√

θ2 + θ20

)
est l’opposée de la pente de la fonction bleue. La monotonie d’une fonction est reliée au signe
de sa pente (par la dérivée). La solution de gauche, quand elle existe, est donc stable. Celle du
milieu, quand elle existe est instable. Et celle de droite, quand elle existe, est stable.

Thermodynamique des trous noirs (IPhOs, Liban 2007) :

On peut montrer que la masse d’un trou noir, à l’équilibre entre son rayonnement propre
et le rayonnement du fond diffus cosmologique, vérifie

dm

dt
= − hc4

16G2

1

m2

(
1− m4

m∗4

)
On se demande alors, les trous noirs ont-ils tendance à s’évaporer ou à se stabiliser ?

(question légitime)

On remarque que m∗ est clairement la seule position d’équilibre de la masse. Si m > m∗, on
remarque que dm

dt > 0, donc on s’éloigne de m∗. De même, si m < m∗, dm
dt > 0, donc on s’éloigne

encore de m∗. C’est donc un équilibre instable ! Reste à savoir s’ils ont tendance à s’évaporer
ou à engloutir tout l’univers...

X Physique SI 2017 :

En étudiant un transducteur électroacoustique, on est ramené à l’équation différentielle :

αẌ = A0G(X)−X

On représente la fonction A0G ainsi que la droite Y = X :
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Les positions d’équilibre sont les croisements de ces deux courbes. Pour la première
position d’équilibre, la pente de A0G(X) est plus grande que celle de X, donc A0G(X)−X est
croissante, donc la position est instable. Pour la deuxième position d’équilibre, c’est l’inverse,
elle est donc stable.

2 Comportement des sytèmes physiques au voisinage d’une position
d’équilibre

Le principe fondamental de la dynamique s’écrit, en une dimension,

mẍ = F (3)

On se limitera donc dans cette partie à des équations de cette forme. Nous voulons aussi
écrire que F est une fonction de x, pour se ramener aux cas étudiés précédemment. Ce n’est
pas toujours possible. En effet si on prend un élastique, et qu’on tire dessus si fort qu’on le
distend, au retour il n’exercera pas la même force qu’à l’aller, puisque ses caractéristiques
physiques ont été modifiées entre l’aller et le retour. Cependant, suffisamment proche d’une
position d’équilibre, c’est possible.

Nous voulons savoir comment un système physique se comporte lorsqu’il est un tout petit
peu perturbé par rapport à sa position d’équilibre. Nous nous fichons de tout connaître sur le
système, nous voulons seulement son comportement (donc quelque chose d’approximatif) au
voisinage d’une position d’équilibre, puisque comme on l’a vu plus haut, c’est le comportement
local qui nous renseigne sur la stabilité. Cette approche est d’autant plus valable que, si la
position d’équilibre est stable, on sait que l’on reste proche de celle-ci, donc on l’approximation
au voisinage de la position d’équilibre reste vraie. Nous nous permettons donc d’approximer la
force par sa tangente en la position d’équilibre. Puisqu’on veut avoir ẍ = 0, pour une position
d’équilibre x0, on a F (x0) = 0. On écrit donc

mẍ ≈ dF

dx

∣∣∣
x=x0

(x− x0) (4)

Il s’agit simplement de l’équation de la tangente à F en x0.
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Et comme on l’a vu plus tôt, la monotonie de F au voisinage de x0, c’est-à-dire le signe
de dF

dx

∣∣∣
x=x0

, nous renseigne sur la stabilité de la position d’équilibre. Plutôt que de systémati-

quement dériver, ce qui peut être technique et long à faire, nous allons apprendre un moyen
efficace de linéariser des fonctions, les développements limités.

2.1 Développement Limités (DLs)

Faire un DL, c’est approximer localement une fonction par un polynôme. Un DL à l’ordre n,
c’est approximer une fonction par un polynôme de degré n. Nous ferons essentiellement des
DLs à l’ordre 1, c’est-à-dire linéariser. Le principe est donc exactement ce qu’on a vu, c’est
regarder localement ce qui se passe pour une fonction donnée, et en donner l’équation de la
tangente. Simplement la méthode est autre que la dérivation (mais donne heureusement le
même résultat). On commence par donner les DLs de fonctions usuelles au voisinage de 0,
pour une variable x adimensionnée.

Fonction DL à l’ordre 1 en 0
ex 1 + x

ln(1 + x) x

(1 + x)α 1 + αx

cos(x) 1

sin(x) x

Il peut être utile de connaître le DL à l’ordre 2 de cos : cos(x) =
x≪1

1− x2

2

Comment savoir si on est suffisamment proche de 0? Les fonctions citées varient sur une
échelle typique de l’ordre de l’unité, il faut donc avoir x ≪ 1 . Petit comment ? Cela dépend
de la précision de l’expérience. Mais on sait désormais à quoi comparer x pour faire une
approximation. Ce qui l’est important de comprendre c’est que plus on monte dans les ordres,
et plus les termes sont petits. En effet, x ≪

x≪1
1, donc xn+1 ≪

x≪1
xn.

Méthode 1 : Calcul des DLs adimensionnés au voisinage de 0

On utilise les DLs usuels pour obtenir une somme de produits de fonctions linéarisées.
Les DLs se composent, se multiplient et s’additionnent naturellement. Puisque l’on fait
une linéarisation, on néglige tous les termes avec des puissances de x plus grandes que
1.
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Exemple :

(1 + x)βe(1+x)α =
x≪1

(1 + βx)e1+αx

= (1 + βx)e× eαx

= e× (1 + βx)(1 + αx)

= e× (1 + (β + α)x)

Pour plus d’entraînement, voir exercice 1.

On considère maintenant une fonction quelconque, au voisinage d’un point quelconque, qui
peut avoir une dimension.

Méthode 2 : Méthode de calcul des DLs dimensionnés au voisinage d’un point quelconque

On fabrique un paramètre adimensionné x0 ≪ 1. On se ramène alors au cas des DLs
adimensionnés au voisinage de 0.

Exemple :

Champ gravitationnel au voisinage de la surface de la Terre :

Nous sommes, comme vous le savez, très loin du noyau de la Terre, ce qui fait qu’à notre
échelle, le champ gravitationnel varie à peine. Si l’on veut estimer la manière dont il varie, on
peut faire un DL. Cela nous donnera la pente de sa variation.

On crée une variable adimensionnée très petite devant 1, en l’occurence z−RT
RT

= h
RT

.

G(h) = − GMT

(RT + h)2

= −GMT

R2
T

(
1 +

h

RT

)−2

=
h

RT
≪1

−GMT

R2
T

(
1− 2

h

RT

)
Pour qu’il diminue d’1%, il faut donc se placer à une hauteur h telle que

2h

RT
= 1%

h ≈ 32km

L’approximation d’un G uniforme est donc très bonne à notre échelle. On sait aussi qu’en
valeur absolue, on surestime le champ de gravitation.

Bille sur un anneau en rotation :

Vous établirez en exercice (N°23) l’équation différentielle d’une bille astreinte à se déplacer
sur un anneau en rotation à la vitesse angulaire Ω :

θ̈ = − g

R
sin(θ) + Ω2 sin(θ) cos(θ)

Il y a, pour Ω > Ωc =
√

g
R , 4 positions d’équilibre, 0, π et θeq± = ±arcos

(
Ω2

c
Ω2

)
. On va s’intéresser

à la stabilité de θeq+. On fera un DL à l’ordre 1 du terme de droite de l’équation différentielle
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pour savoir si cette position est stable ou non, et puisque c’est une position d’équilibre,
on ne s’embêtera pas à calculer le terme constant, puisqu’on sait qu’il s’annule. On pose
ε = θ − θeq+ ≪ 1. Cela va nous donner l’occasion d’apprendre à faire le DL à l’ordre 1 de
fonctions trigonométriques en un point quelconque. On a deux possibilités : soit on utilise les
formules d’addition de cosinus et de sinus : cos(a+ b) = cos(a) cos(b)− sin(a) sin(b) et sin(a+ b) =
sin(a) cos(b) + cos(a) sin(b), cela nous permet de nous ramener au voisinage de 0, soit on écrit
cos(θ + ε) ≈ cos(θ) + cos′(θ)ε = cos(θ)− sin(θ)ε. On fait le DL de chaque fonction individuellement
avant de réinjecter le tout dans l’équation.

sin(θ) = sin(θeq+ + ε) = sin(θeq+) cos(ε) + cos(θeq+) sin(ε)

≈
ε≪1

sin(θeq+) + cos(θeq+)ε

cos(θ) = cos(θeq+ + ε) = cos(θeq+) cos(ε)− sin(θeq+) sin(ε)

≈
ε≪1

cos(θeq+)− sin(θeq+)ε

− g

R
sin(θ) + Ω2 sin(θ) cos(θ) = −Ω2

c sin(θ) + Ω2 sin(θ) cos(θ)

= (Ω2 cos(θ)− Ω2
c) sin(θ)

≈
ε≪1

(Ω2(cos(θeq+)− sin(θeq+)ε)− Ω2
c)(sin(θeq+) + cos(θeq+)ε)

= (Ω2 cos(θeq+)− Ω2
c) cos(θeq+)ε− Ω2 sin2(θeq+)ε

= (Ω2Ω
2
c

Ω2
− Ω2

c) cos(θeq+)ε− Ω2(1− cos2(θeq+))ε

= −Ω2
(
1− Ω4

c

Ω4

)
ε

Et comme Ω > Ωc, Ω4
c

Ω4 < 1. Donc cette position d’équilibre est stable. On verra juste après que ce

DL veut dire qu’au voisinage de cette dernière, le système oscille à la pulsation ω = Ω
√
1− Ω4

c
Ω4 .

Propriété 3 : DL à l’ordre n, formule de Taylor

La formule générale suivante donne le DL à l’ordre n en un point quelconque de n’importe
quelle fonction dérivable n fois. Elle n’est pas à connaître et est rarement utile.

f(a+ h) =
h→0

n∑
k=0

1

k!

dkf

dxk

∣∣∣
x=a

hk (5)

Il est tout de même important de la connaître à l’ordre 2, car cela intervient dans le DL de
l’énergie potentielle :

f(a+ h) =
h→0

f(a) + f ′(a)h+
1

2
f ′′(a)h2

La méthode des DLs peut paraître contre-intuitive initialement, c’est pourquoi il faut en
faire beaucoup, et vous avez pour cela un poly d’exos à votre disposition (voir exercices 2 à 5).
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2.2 L’équation différentielle ẍ± ω2x = 0

Maintenant qu’on sait comment se ramener au voisinage d’un point d’équilibre, il faut se
demander comment on résout l’équation différentielle qui en découle.

On peut donc mettre le problème sous la forme

ẍ± ω2x = C (6)

+ pour les positions stables, − pour les positions instables.

La méthode pour résoudre une équation linéaire est toujours la même :

Méthode 3 : Résoudre une équation différentielle linéaire

— Trouver la solution particulière xp, c’est-à-dire la solution de la forme du membre
de droite, c’est-à-dire constante. On résout donc pour ẍ = 0.

— Trouver la solution xh de l’équation homogène associée, c’est-à-dire celle où on ne
garde que les termes en x, c’est-à-dire ẍ± ω2x = 0.

À la fin, x = xh + xp.

— Finalement, on trouve les constantes en utilisant les conditions initiales sur x(t = 0)
et ẋ(t = 0).

Il ne reste plus qu’à vous donner la solution au problème

ẍ± ω2x = 0 (7)

Propriété 4 : Solutions de l’équation différentielle ẍ± ω2x = 0

ẍ− ω2x = 0 x(t) = Aeωt +Be−ωt = A′ cosh(ωt) +B′ sinh(ωt)
ẍ+ ω2x = 0 x(t) = A cos(ωt) +B sin(ωt) = A′ cos(ωt+ ϕ)

Remarques :
— C’est clairement la deuxième, le cas d’une position stable, qui est la plus importante à

connaître.

— On a bien les comportements attendus, la position instable diverge et la position stable
reste bornée.

— Les solutions stables sont oscillantes. Ici, on n’a pas modélisé de pertes d’énergie (de
frottements), donc cela oscille indéfiniment. Dans la vraie vie, ces oscillations s’atténuent
sous l’effet de la dissipation énergétique.

— La fréquence d’oscillation vaut f =
ω

2π
et la période T = 2π

ω .

— Les fonctions cosh(x) =
ex + e−x

2
et sinh(x) =

ex − e−x

2
sont à connaître, car cosh′(x) = sinh(x)

et sinh′(x) = cosh(x), ce qui est pratique car sinh(0) = 0 et cosh′(0) = 0. Cela fait que la
fonction cosh est sensible à la valeur initiale, et sinh est sensible à la dérivée intiale. cosh
est paire, sinh est impaire, elles sont donc utiles quand on a un système qui présente des
symétries. Il peut être utile de savoir que cosh2(x)− sinh2(x) = 1.
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x

t

Exemple de solution stable

— Les solutions instables divergent, et sortent des proportions typiques du système en un
temps typique 1

ω

x

t

Exemple de solution instable
Cela veut dire qu’en un temps typique de l’ordre de 1

ω , l’approximation x très proche de
xeq n’est plus valable.

La pulsation ω est dite pulsation propre du système, elle est caractéristique du système
et ne dépend pas des conditions initiales. C’est pour cela qu’on dit que l’oscillateur est
harmonique.

Exemples :

Pendule simple :

L’équation mécanique du pendule simple est

θ̈ +
g

l
sin(θ) = 0

Désormais, ce genre de choses ne vous fait pas peur ! D’abord, le DL. On arrive à :

θ̈ +
g

l
θ = 0

On suppose qu’on part d’une position θ0 sans vitesse initiale. La pulsation propre du pendule
est donc ω =

√
g
l . Voilà un exemple où la pulsation propre nous renseigne sur des propriétés
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intrinsèques du système, c’est une partie de l’intérêt de l’oscillateur harmonique. La solution
est de la forme

θ(t) = A cos(ωt) +B sin(ωt)

Les conditions initiales sont θ(t = 0) = A = θ0, θ̇(t = 0) = Bω = 0, donc A = θ0 et B = 0.
Finalement,

θ(t) = θ0 cos(ωt)

Et vous comprenez comment on peut faire une mesure de g avec un pendule ! La période T

des oscillations est 2π
√

l
g .

Quasi-ressort :

On suppose qu’une masse m est soumise à une force de la forme F (x) = −mω2
1(x− a4/x3)

dans la région x > 0 . On se retrousse les manches et on y va. Position d’équilibre ? On résout
pour F (xeq) = 0, on trouve xeq = a. On veut savoir si c’est stable ou non, on fait un DL.

F (xeq + ε) = −mω2
1

(
a+ ε− a4

(a+ ε)3

)
= −mω2

1

(
a+ ε− a

(1 + ε/a)3

)
=

|ε|≪a
−mω2

1

(
a+ ε− a(1− 3ε/a)

)
= −4mω2

1ε

C’est stable ! C’est aussi une bonne leçon : quand on fait un DL de la force au voisinage de
la position d’équilibre, on sait que le terme constant s’annule, on n’a donc pas besoin de le
calculer (puisque la force s’annule au niveau d’une position d’équilibre). Au voisinage de la
position d’équilibre, on a donc

ẍ = ẍeq + ε̈ = ε̈

mẍ = F (xeq + ε) = −4mω2
1ε

Donc :

ε̈+ (2ω1)
2ε = 0

La pulsation est donc 2ω1. Pour plus d’entraînement de ce genre, voir exercices 23, 26 et 27.

2.3 Le ressort

On sait donc que tout système mécanique, au voisinage d’une position d’équilibre stable,
est équivalent à un système percevant une force F (x) = −k(x − x0). Il se trouve que c’est
l’équation constitutive d’un ressort.
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Propriété 5 : Force de rappel d’un ressort

Un ressort exerce une force F⃗ en fonction de sa longueur l :

F⃗ = −k(l − l0)u⃗l (8)

Avec u⃗l un vecteur unitaire (de norme 1) parallèle au ressort et orienté dans le sens
d’augmentation de la longueur l. k est appelée la constante de raideur du ressort et l0
est appelée la longueur à vide.

Pour un ressort réel, un ordre de grandeur de k est 50Nm−1 (pour un ressort utilisé en TP).

L’oscillateur harmonique est la raison pour laquelle on voit des ressorts partout en mé-
canique, il s’agit de la linéarisation de la force au voisinage d’une position d’équilibre stable.
C’est en particulier la force exercée par un élastique au voisinage de sa position d’équilibre.
On parle de force élastique.

l

u⃗l

F⃗

On fait quasi-systématiquement l’hypothèse que le ressort est idéal, c’est-à-dire sans
masse. En effet, l’expression de la force exercée par un ressort sous-entend qu’à tout moment,
il est étiré exactement suffisamment pour compenser la force qu’on applique sur lui : cela
suppose qu’il n’ait pas d’inertie. Sinon, la déformation est une onde mécanique qui se propage.

Exemple :

Système masse-ressort :

m

l0 + x
l0

Une masse m est posée sur une table attachée à un ressort de longueur à vide l0 et de
raideur k. On suppose qu’elle peut glisser sans frottements. L’équation du mouvement est
alors, selon x,

ẍ+
k

m
x = 0

La pulsation propre est donc ω =
√

k
m .

Si on met la masse à la verticale, l’équation devient alors

ẍ+
k

m
x = g

Donc la position d’équilibre est alors xeq =
mg
k .

Pour plus d’entraînement autour du ressort, voir exercices 6 à 11 et 15 à 17.
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3 Énergie et oscillateur harmonique

Vous le reverrez en mécanique, mais l’un des théorèmes fondamentaux de la mécanique
est le théorème de l’énergie mécanique (TEM). On l’écrit ici dans le cas particulier où les forces
sont conservatives. Qu’est-ce qu’une force conservative ? Vous le verrez en mécanique. Ici, on
ne s’en soucie pas, car en une seule dimension, si la force dépend de la position uniquement,
elle est conservative. On a donc :

Ec + Ep = cste (9)

Où
Ec =

1

2
mv2 (10)

Et

Définition 1 : Énergie potentielle

Ep = −
x�
F (x)dx (11)

N’ayez pas peur de l’intégrale ! Pour le calcul, il s’agit uniquement d’une primitive. C’est-
à-dire que

� x
F (x)dx est une fonction dont la dérivée vaut F (x). Pour un monôme xn, une

primitive est xn+1

n+1 , et la primitive de sin(x) est − cos(x). Vous pouvez vérifier que l’on retrouve
le PFD en dérivant le théorème de l’énergie mécanique.

On a donc
F (x) = −dEp

dx
(12)

Cela veut dire que

Propriété 6 : Sens de la force

La force pointe dans la direction de diminution de l’énergie potentielle

Et aussi que l’énergie potentielle est définie à une constante près. Dans la suite, on
omettra donc savamment toutes les constantes. Voici les deux énergies potentielles qu’il faut
connaître :

Énergie potentielle de pesanteur (pour un axe z orienté vers le haut) :

Epp = mgz (13)

Énergie potentielle d’interaction élastique :

Epel =
1

2
k(l − l0)

2 (14)

Tout ça pour dire qu’on a une deuxième équation dont la solution est un oscillateur harmonique
(notre combinaison de cos et de sin) :

1

2
mẋ2 +

1

2
mω2(x− x0)

2 = cste (15)

Cela n’est pas à connaître, mais il faut simplement se souvenir que lorsqu’on voit une équation
de la forme ẋ2 + ω2x2 = cste, il faut penser à dériver.
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Méthode 4 : Équations différentielles quadratiques

Si on a une équation différentielle de la forme

ẋ2 + V (x) = cste (16)

Que l’on sait difficilement résoudre, il faut penser à dériver. C’est le passage entre le
TEM et le PFD.

C’est encore une raison pour laquelle l’oscillateur harmonique est extrêmement important
en physique : il couple f et f ′ de manière symétrique. Quand vous étudierez la mécanique
analytique, on étudie les coordonnées (p, q), avec p la quantité de mouvement, et q la position. Le
couplage entre ces deux variables est symétrique dans l’énergie pour un oscillateur harmonique.
Et c’est l’énergie, qu’on appelle le Hamiltonien, qui permet de trouver les équations du
mouvement.

Exemple :

Fibre à gradient d’indice :

On se place dans une fibre optique, c’est-à-dire un cylindre constitué d’un cœur transparent
et d’une âme réfléchissante :

acœur

âme

On suppose que l’indice optique varie en fonction de la distance à l’axe central de la façon
suivante :

n(r) = n0

√
1− 2∆

r2

a2
(17)

On cherche r(z). On admet la loi de Snell-Descartes en continu :

n(r) sin(θ(r)) = n0 sin(θ0) (18)

On la retrouve en faisant un raisonnement infinitésimal, de proche en proche.

z

r

O

θ0

i

θ(r)

air n(r)

Que vaut sin(θ(r)) ? Faisons un schéma.
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√
dz2 + dr2

dz

dr

r

π
2 − θ

θ

En appliquant le théorème de Pythagore, on trouve que sin(θ(r)) = dz√
dz2+dr2

= 1√
1+r′(z)2

.

L’équation différentielle est donc

n(r)
1√

1 + r′(z)2
= n0 sin(θ0)

n(r)2

1 + r′(z)2
= n2

0 sin(θ0)
2

n(r)2 = n2
0 sin

2(θ0)(1 + r′(z)2)

n2
0

(
1− 2∆

r2

a2

)
= n2

0 sin
2(θ0)(1 + r′(z)2)

sin2(θ0)r
′(z)2 + 2∆

r2

a2
= 1− sin2(θ0)

r′(z)2 +
2∆

sin2(θ0)a2
r2 =

cos2(θ0)

sin2(θ0)

Avec k =
√
2∆

sin(θ0)a
, on retrouve :

r′2 + k2r2 =
cos2(θ0)

sin2(θ0)

Donc la solution est de la forme :

r(z) = A cos(kz) +B sin(kz)

On a pour conditions initiales r(z = 0) = 0, r′2(z = 0) = cos2(θ0)

sin2(θ0)
. La solution est donc finalement

de la forme
r(z) =

cos(θ0)

k sin(θ0)
sin(kz)

Pour plus d’entraînement autour du lien TEM-PFD, voir exercice 30 et problème 3.

3.1 Énergie, équilibre et stabilité

On a donc un système caractérisé par une énergie potentielle Ep(x) et une force F (x) = −dEp

dx .
Toutes nos discussions sur les équilibres s’appliquent ! Il ne reste qu’à transposer tout ça.

Équilibre

Il s’agit donc d’un point d’annulation de la force, donc de la dérivée de l’énergie potentielle.
C’est-à-dire :
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Propriété 7 : Équilibre et énergie

Un point d’équilibre est un extremum local de l’énergie potentielle.

Stabilité

Supposons que la position d’équilibre soit stable. La force est donc décroissante. Cela
veut dire que pour x > xeq, F (x) = −dEp

dx < 0, donc l’énergie potentielle est croissante pour
x > xeq. De même, pour x < xeq, F (x) = −dEp

dx > 0 donc l’énergie potentielle est décroissante
pour x < xeq. Donc

Propriété 8 : Équilibre stable et énergie potentielle

Un point d’équilibre stable est un minimum local de l’énergie potentielle.

De même :

Propriété 9 : Équilibre instable et énergie potentielle

Un point d’équilibre instable est un maximum local de l’énergie potentielle.

Exemple :

Pendule simple :

L’énergie potentielle du pendule simple est

Ep = mgz

Que vaut z ? Faisons un schéma pour le voir.

z

O

l

•

θ

l cos(θ)

Donc z = −l cos(θ). D’où :

Ep = −mgl cos(θ)

Représentons cette énergie potentielle :
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−2π −π 0 π 2π θ

Énergie potentielle de pesanteur en fonction de θ.

Il y a donc un position d’équilibre instable, θ = π, et une position d’équilibre stable (que l’on
attendait bien), θ = 0, comme on l’a déjà vu.

Pour plus d’entraînement sur les liens entre énergie est stabilité, voir exercices 18, 24 et 25.

Voisinage d’une position d’équilibre

On a vu qu’au voisinage d’une position d’équilibre, on a

F (x) ≈ dF

dx

∣∣∣
x=x0

(x− x0)

Cela devient, en termes d’énergie potentielle :

dEp

dx
≈ d2Ep

dx2

∣∣∣
x=x0

(x− x0)

En primitivant une fois, on trouve que l’on a fait le DL à l’ordre 2 de l’énergie potentielle,
c’est-à-dire qu’on l’a parabolisée :

Ep ≈
1

2

d2Ep

dx2

∣∣∣
x=x0

(x− x0)
2 (19)

Se ramener à l’oscillateur harmonique, c’est linéariser la force, et c’est aussi paraboliser
l’énergie potentielle.

Et finalement on a une deuxième condition énergétique pour la stabilité des positions
d’équilibre :

Propriété 10 : Stabilité et énergie potentielle

Un point d’équilibre est stable si et seulement si d2Ep

dx2

∣∣∣
x=xeq

⩾ 0.

Exemple :

Pendule simple :

On se rappelle qu’on a Ep = −mgl cos(θ). On fait le DL à l’ordre 2 en voisinage de 0 :
Ep =

1
2mglθ2 (en faisant disparaître la constante). L’énergie cinétique est Ec =

1
2mv2 = 1

2ml2θ̇2.
Donc l’équation différentielle est :

θ̇2 +
g

l
θ2 = cste

On retrouve ω =
√

g
l .

Pour explorer le DL à l’ordre 2 de l’énergie potentielle, voir problème 1.
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4 Aller plus loin que l’oscillateur harmonique

On va maintenant regarder deux phénomènes qui utilisent l’oscillateur harmonique, en le
rendant encore plus riche.

4.1 Oscillateurs couplés

Rien ne sera démontré ici, pour les démonstrations, voir l’exercice 12. Pour une illustration,
voir https ://www.youtube.com/watch ?v=YyOUJUOUvso

Les oscillateurs couplés tombent au test de présélection, et avoir quelques connaissances
dessus peut vous faire gagner énormément de temps. On considère donc deux oscillateurs
harmoniques identiques (par exemple deux systèmes masse ressort avec la même raideur et
la même longueur à vide, ou deux pendules simples de même longueur). On leur associe donc
une pulsation propre ω0. On les couple à l’aide d’un oscillateur, typiquement un ressort, de
raideur k′ et de longueur à vide l0. Exemple :

m

l

m

l

l0

Ce système a 2 modes propres.

Mode symétrique

Il s’agit du mode où, à une constante près, la position de l’oscillateur 1 est égale à la
position de l’oscillateur 2 :

m

l
θ1

m

l
θ2

l0

C’est le mode où l’oscillateur de couplage reste à sa longueur à vide. La pulsation de ce
mode propre est donc ω0 : il n’y a pas de transfert d’énergie entre les deux oscillateurs. On
prépare ce mode en imposant comme conditions initiales la même différence par rapport à la
position d’équilibre pour les deux oscillateurs.
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t

Mode antisymétrique

Il s’agit du mode où, à une constante près, la position de l’oscillateur 1 est l’opposée de la
position de l’oscillateur 2 :

m

l
θ1

m

l
θ2

La pulsation de ce mode, ω1 est nécessairement plus grande qu’ ω0 : on peut le voir sur cet
exemple, quand les pendules s’écartent, le ressort les retient, ce qui diminue le temps d’une
période, augmentant ω. Mais plus généralement, la pulsation d’un oscillateur est toujours
croissante de la force qu’il subit (

√
k
m est croissant de k,

√
g
l est croissant de g), et on

impose une force supplémentaire, cela fait donc augmenter la pulsation propre. Sa valeur
exacte dépend de la situation. Pour la calculer, on pose les équations du mouvement, puis
on les simplifie en supposant que le mode est antisymétrique. Dans ce mode, l’oscillateur de
couplage emmagasine périodiquement de l’énergie, puis la rend de manière symétrique aux
deux oscillateurs. On prépare ce mode en imposant comme conditions initiales une différence
opposée à la position d’équilibre pour chacun des oscillateurs.

t

La raison pour laquelle on étudie ces deux modes est que la solution générale est une
superposition de ces deux modes propres, donc une superposition d’oscillations à ω0 et à ω1.

Faible couplage : phénomène de battements

Si le couplage est faible, c’est-à-dire que l’oscillateur de couplage a une pulsation propre
très faible devant la pulsation propre des deux autres oscillateurs, la pulsation ω1 du mode
antisymétrique est très proche de ω0 (quand il y a très peu de couplage, on doit se rapprocher
de la situation où il n’y a pas de couplage). La solution générale est donc une somme de deux
oscillations proches, ce qui donne lieu à un phénomène de battements.
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t

La fréquence rapide est donc environ ω0, et la fréquence des battements est |ω1−ω0| = ω1−ω0,
qu’on peut généralement simplifier à l’aide d’un développement limité. On les observe en ne
déplaçant initialement qu’un des deux oscillateurs de sa position d’équilibre. Ils sont alors
en opposition de phase entre les deux oscillateurs, le ressort permet un transfert d’énergie
périodique entre les deux oscillateurs.

Les oscillateurs couplés sont abordés dans les exercices 13 et 14.

4.2 Oscillateur harmonique amorti

Je ne pense pas que la connaissance des solutions exactes soit vraiment dans l’esprit des
IPhOs, sachant qu’aux épreuves internationales ils rappellent la solution pour les équations
ẍ − ω2x = 0, et que c’est vraiment du travail technique de Bac+1. Cependant, l’oscillateur
harmonique amorti est mentionné dans le syllabus, il est donc nécessaire d’avoir quelques
connaissances qualitatives dessus.

On a dit que l’oscillateur harmonique ne prenait pas en compte les frottements. Nous
allons désormais examiner ce qui se passe quand on rajoute un terme de frottements. Pour
des mouvements suffisamment lents, on peut considérer les frottements les plus simples
possibles, c’est-à-dire des frottements linéaires, en −λv. On est donc ramené à l’équation
différentielle :

ẍ+
ω0

Q
ẋ+ ω2

0x = 0 (20)

Q est appelé le facteur de qualité du système. Plus il est grand, plus on se rapproche de
l’oscillateur harmonique. Plus il est faible et plus l’amortissement est fort.

On dit qu’elle est sous forme canonique. Si elle ne l’est pas, on la met sous cette forme.

Exemple :

Le circuit RLC série : On considère le circuit suivant :

E

i(t)

R L

CU(t)

L’équation différentielle est :

Ü +
R

L
U̇ +

1

LC
U =

E

LC
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On remarque tout d’abord que pour R = 0, le circuit est un oscillateur harmonique. Le circuit
LC est un oscillateur harmonique classique qu’il faut connaître (cf le cours d’électrocinétique).
On cherche à la mettre sous forme canonique. On voit que ω0 =

1√
LC

. On cherche ensuite Q tel
que :

ω0

Q
=

R

L

Q =
Lω0

R
=

L

R
√
LC

=
1

R

√
L

C

On se ramène bien à la forme canonique d’une équation du second ordre.

Comme vous le verrez en 5.1.1, pour résoudre l’équation différentielle, il faut résoudre
l’équation caractéristique :

r2 +
ω0

Q
r + ω2

0 = 0 (21)

Il y a donc trois régimes, à connaître.

Régime apériodique, Q < 1/2

Si Q < 1/2, l’amortissement est si fort que le système n’a pas le temps d’osciller. Le régime
est donc apériodique.

x

t

Les solutions sont les suivantes :

Propriété 11 : Régime apériodique

1

τ1,2
=

1

2

(ω0

Q
± ω0

√
1

Q2
− 4

)
> 0 (22)

Les solutions sont de la forme :

x(t) = Ae−t/τ1 +Be−t/τ2 (23)

Régime critique, également apériodique, Q = 1/2

Le régime est également apériodique, la forme mathématique des solutions est simplement
différente.

Propriété 12 : Régime critique

x(t) = (At+B)e−ω0t (24)
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Régime pseudo-périodique, Q > 1/2

Si Q > 1/2, l’amortissement est suffisament faible pour que le système oscille. Cependant
l’amortissement fait tendre la solution vers 0.

x

t

Les solutions sont les suivantes :

Propriété 13 : Régime pseudo-périodique

Ω = ω0

√
1− 1

4Q2

τ = 2Q/ω0

x(t) = e−t/τ (A cos(Ωt) +B sin(Ωt)) (25)

Et maintenant les choses vraiment importantes à connaître :

— Les solutions oscillent à une pulsation Ω < ω0, d’autant plus proche de ω0 que Q est grand.
Le terme de frottements ralentit le système, il est donc normale que sa pulsation soit
plus faible que sa pulsation sans frottements, et plus l’amortissement est faible, plus on
se rapproche de la pulsation sans frottements.

— Le facteur de qualité est de l’ordre de N , le nombre d’oscillations visibles. Par exemple,
pour la courbe ci-dessus, Q ≈ 5.

— Moins important à connaître : pour une estimation plus précise Q, on peut utiliser
le décrément logarithmique, δ = ln

(
x1
x2

)
, avec x1 et x2 deux maxima successifs. On a

l’approximation δ ≈ π
Q .

L’oscillateur harmonique amorti est traité dans les exercices 29 et 33.

5 Bonus

Le contenu de cette section est purement pour votre culture, rien n’est à connaître.

5.1 Résoudre une équation différentielle linéaire

5.1.1 Systèmes d’équations linéaires

En 2025 dans le test de présélection français des IPhOs, sujet pour terminales, il fallait
résoudre le système d’équations différentielles couplées suivant sur deux intensités électriques
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I1 et I2 : 
d2I1
dx2

=
I1
d21

− I2
d22

d2I2
dx2

=
I2
d22

− I1
d21

Dans le cas d1 = d2 = d, avec comme conditions aux limites I1(0) − I2(0) = I1(L) − I2(L) = I0,
I1(0)+I2(0) = I1(L)+I2(L) = I0. On va donc voir quelques méthodes pour résoudre des systèmes
d’équations différentielles linéaires couplées dans des cas simples.

Vous remarquerez que quand d1 = d2 = d, le couplage entre I1 et I2 est symétrique ; c’est-à-
dire que le contenu de la deuxième équation se déduit de la première en échangeant les rôles
de I1 et I2 : 

d2I1
dx2

=
I1
d2

− I2
d2

d2I2
dx2

=
I2
d2

− I1
d2

Méthode 5 : Systèmes d’équations différentielles linéaires à couplage symétrique

Dans le cas d’un système d’équations différentielles à couplage symétrique :
d2f

dx2
=af+bg

d2g

dx2
=bf+ag

Poser S = f + g et D = f − g. Les équations obtenues sur S et D sont alors découplées.
Cette méthode fonctionne aussi si le système est d’ordre 1. La présence de constantes
dans les équations ne doit pas changer la méthode, cela impliquera simplement des
constantes dans les équations différentielles découplées, qui peuvent être traitées
comme n’importe quelle équation avec second membre.

Exemple :

Reprenons notre système dans le cas symétrique :
d2I1
dx2

=
I1
d2

− I2
d2

d2I2
dx2

=
I2
d2

− I1
d2

Soit S = I1 + I2, D = I1 − I2.

d2S

dx2
=

d2I1
dx2

+
d2I2
dx2

=
1

d2

(
I1 + I2 − I1 − I2) = 0

d2D

dx2
=

d2I1
dx2

− d2I2
dx2

=
1

d2

(
I1 − I2 − I2 + I1) =

2

d2
D

Donc S(x) = Ax+ b, b = I1(0) + I2(0) = I0, AL+ b = I1(L) + I2(L) = I0, donc S(x) = I0.

D(x) = λe
√
2x/d + µe−

√
2x/d, D(0) = λ + µ = I0 et λe

√
2L/d + µe−

√
2L/d = I0. Donc D(x) =

I0
1+e−

√
2L/d

(
e−

√
2x/d + e

√
2(x−L)/d

)
.
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I1(x) =
S(x) +D(x)

2
=

I0
2

(
1 +

1

1 + e−
√
2L/d

(e−
√
2x/d + e

√
2(x−L)/2)

)
I2(x) =

S(x)−D(x)

2
=

I0
2

(
1− 1

1 + e−
√
2L/d

(e−
√
2x/d + e

√
2(x−L)/2)

)
Si le système est à couplage antisymétrique, on passe par les complexes :

Méthode 6 : Systèmes d’équations différentielles linéaires à couplage anti-symétrique

Un système à couplage antisymétrique est de la forme suivante :
d2f

dx2
= bg

d2g

dx2
=−bf

On pose alors u = f + ig. On obtient une équation différentielle sur u que l’on peut
résoudre avec les méthodes vues plus haut. Cette méthode marche aussi pour les
systèmes d’ordre 1.

Exemple :

Particule chargée dans un champ magnétique uniforme :

Si l’on considère une particule de masse m et de charge q dans un champ magnétique
B⃗0 = B0u⃗z, les équations du mouvement sont :{

ẍ = ωcẏ

ÿ =−ωcẋ

Et ż = ż0, avec ωc = − qB0

m

Soit u = x+ iy. ü = ẍ+ iÿ = ωcẏ − iωcẋ = −iωc(ẋ+ iẏ) = −iωcu̇.

u̇(t) = u̇0e
−iωct

u(t) =
iu̇0
ωc

e−iωct + c0

La projection du mouvement dans le plan z = 0 est circulaire uniforme de rayon v0
ωc
, de pulsation

ωc et de centre c0.
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5.1.2 Équations différentielles linéaires d’ordre n à coefficients constants

Propriété 14 : Équations différentielles homogènes à coefficients constants

Si vous avez une équation linéaire homogène (c’est-à-dire sans second membre, avec
uniquement des termes en dkf

dxk ) d’ordre n, de la forme

dnf

dxn
+ an−1

dn−1f

dxn−1
+ · · ·+ a1

df

dx
+ a0f = 0 (26)

les solutions sont de la forme

f(x) = λ1e
r1x + · · ·+ λne

rnx

avec r1, . . . , rn les racines du polynôme caractéristique P = Xn+an−1X
n−1+ · · ·+a1X +a0.

Cela n’est vrai que si toutes ces racines sont distinctes, mais un peu de topologie et de
théorie de la mesure nous permet de dire que les racines sont presque toujours distinctes,
c’est-à-dire que la probabilité que ce ne soit pas le cas est nulle. Malgré tout, des cas
théoriques peuvent nous amener à devoir prendre en compte ce cas expérimentalement
inatteignable.

Il faut donc parler de la multiplicité des racines. Une racine r de P est de multiplicité m si
l’on peut factoriser P sous la forme P = (X − r)mQ(X) où Q(r) ̸= 0. Une autre caractérisation
est que r est de multiplicité m si P et ses m− 1 premières dérivées s’annulent en r (P (r) =
P ′(r) = · · · = P (m−1)(r) = 0), et que P (m)(r) ̸= 0.

Propriété 15 : Formule générale

Si r1, . . . , rl sont les racines du polynôme caractéristique, de multiplicités respectives
m1, . . . ,ml, alors les solutions de l’équation homogène sont de la forme

f(x) = λ1,0e
r1x+λ1,1xe

r1x+λ1,2x
2er1x+· · ·+λ1,m1x

m−1er1x+λ2,0e
r2x+λ2,1xe

r2x+· · ·+λl,ml
xml−1erlx

f(x) =
l∑

k=1

ml−1∑
s=0

λk,sx
serkx (27)

Ces racines sont souvent complexes, mais ça ne pose aucun problème, on se ramène au
cas réel à l’aide des conditions initiales.

Dans le cas de l’oscillateur harmonique, on a

r2 = −ω2

Donc r = ±iω Ainsi les solutions sont de la forme

f(t) = Aeiωt +Be−iωt

= A(cos(ωt) + i sin(ωt)) +B(cos(ωt)− i sin(ωt))

Pour les équations avec second membre, soit

dnf

dxn
+ an−1

dn−1f

dxn−1
+ · · ·+ a1

df

dx
+ a0f = g(x) (28)
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On cherche toujours une solution particulière pour l’additionner à la solution de l’équation
homogène. La solution particulière doit être cherchée de la même forme que le second
membre : polynôme de degré d si g est un polynôme de degré d, combinaison linéaire de
cosinus et sinus si g l’est aussi, un polynôme de degré d fois une exponentielle si g est de
cette forme...

Et à la fin, on détermine les constantes avec les conditions initiales sur f et ses dérivées
d’ordre 1 à n− 1.

Exemple :

Résolvons l’équation différentielle suivante :

d3f

dx3
+

d2f

dx2
− df

dx
− f = αx+ 1

De conditions initiales f(0) = 1, f ′(0) = 0, f ′′(0) = 0.

L’équation homogène associée est

d3f

dx3
+

d2f

dx2
− df

dx
− f = 0

L’équation caractéristique est :
r3 + r2 − r − 1 = 0

(r2 − 1)(r + 1) = 0

(r − 1)(r + 1)2 = 0

Donc la solution homogène est fh(x) = λex + (µ+ νx)e−x.

La solution particulière est de la forme du second membre, donc polynômiale d’ordre 1, on
prend donc fp de degré 1. fp(x) = ax+ b, on réinjecte fp dans l’équation différentielle.

−a− ax− b = αx+ 1

−ax− (a+ b) = αx+ 1

Donc a = −α et b = α − 1. Finalement, f(x) = fh(x) + fp(x) = λex + (µ+ νx)e−x − αx+ α − 1. On
résout ensuite le système posé par les conditions initiales pour trouver λ, µ et ν.


λ+ µ = 2− α

λ− µ +ν = α

λ+ µ−2ν = 0

Finalement, on a :
λ =

α+ 2

4
, µ =

6− 5α

4
, ν =

2− α

2

Le piège de Penning :

On souhaite piéger un électron en (0, 0). Le plus simple serait avec un champ électrique,
puisque l’énergie potentielle est alors Ep = −eV (x, y, z). Il suffirait d’avoir un potentiel électrique
dont le maximum serait en (0, 0). Cependant les équations de Maxwell, précisément l’équation
de Poisson, rendent ce fait impossible. En effet :

∂2V

∂x2
+

∂2V

∂y2
+

∂2V

∂z2
= 0
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Si V admettait un maximum, ce serait un maximum dans toutes les directions, donc il faudrait
avoir ∂2V

∂x2 ,
∂2V
∂y2

, ∂
2V
∂z2

> 0 en ce point, ce qui est donc impossible. On veut donc commencer par le
piéger dans le plan z = 0. On choisit un potentiel de la forme V (x, y, z) = V0

z20
(x2 + y2 − 2z2) (qui

respecte l’équation de Poisson) avec V0 > 0. On voit que (0, 0) est un maximum de V dans la
direction z. Cela donne une force :

F⃗ = −eE⃗ =
2eV0

z20

 x
y

−2z


Puisque l’on peut déjà stabiliser l’électron dans la plan z = 0, on ne va s’intéresser qu’à x et y.
Le piège de Penning consiste à introduire un champ magnétique B⃗0 = B0u⃗z. On obtient alors
l’équation différentielle suivante sur u = x+ iy :

ü+ ωcu̇− ω2
0u = 0

Avec ωc = − eB0
me

, ω0 =
√

2eV0

z20
. L’équation caractéristique est :

r2 + ωcr − ω2
0 = 0

de discriminant : ∆ = −ω2
c + 4ω2

0 . Si ∆ > 0, une des racines est r = 1
2(iωc +

√
∆), de partie réelle

strictement positive, donc ert diverge. Il faut donc, si l’on veut confiner l’électron, avoir ∆ ⩽ 0,
i.e. ωc ⩾ 2ω0. La solution est donc de la forme :

u(t) = λe
i
2
(−ωc−

√
|∆|)t + µe

i
2
(−ωc+

√
|∆|)t

On suppose qu’on a comme conditions initiales u(t = 0) = d0 et u̇(t = 0) = iv0. Cela donne le
système :  λ + µ = d0

i

2

(
−ωc −

√
|∆|

)
λ +

i

2

(
−ωc +

√
|∆|

)
µ = iv0

Que l’on peut résoudre pour obtenir les équations horaires. Il s’agit de la somme de deux
rotations, à deux pulsations différentes, possiblement dans deux sens opposés, mais de même
centre. L’électron reste donc confiné dans le voisinage de (0, 0), alors même qu’il ne s’agit pas
d’un minimum de l’énergie potentielle.

Mouvement d’un électron dans le piège de Penning
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5.2 Oscillateur harmonique en mécanique quantique

En mécanique classique, l’énergie d’un oscillateur harmonique est fixée par les conditions
intiales, et peut donc aller continûment de 0 à +∞. En mécanique quantique, les niveaux
d’énergie sont quantifiés, et valent, pour l’oscillateur harmonique :

En = ℏω
(
n+

1

2

)
= hν

(
n+

1

2

)
(29)

avec ω la pulsation propre de l’oscillateur (la même qu’en mécanique classique). Ce qu’il est
intéressant d’observer est que l’énergie minimale n’est plus 0 mais 1

2hν, qu’on appelle énergie
de point zéro. Cette énergie est particulièrement importante. En effet l’une des idées de
l’électrodynamique quantique est que le champ électrique est un ressort, ce qui veut dire que
même le vide a l’énergie d’un demi photon. C’est par exemple très important pour le calcul de
l’effet Casimir, qui décrit la force attractive entre deux plaques conductrices dans le vide.

5.3 Énergie et oscillateur harmonique en 3 dimensions

Supposons que nous ayons une énergie potentielle Ep(x, y, z). La condition d’équilibre est
que la force s’annule en un point (x0, y0, z0). Cela veut dire qu’une position d’équilibre est un
extremum de l’énergie potentielle. La stabilité vient de la même condition : r⃗0 = (x0, y0, z0) doit
être un minimum de l’énergie potentielle. Mathématiquement, voyons comment cela se traduit.
Le DL à l’ordre 2 de l’énergie potentielle s’écrit :

Ep(r⃗0 + h⃗) ≈ Ep(r⃗0) + ∇⃗Ep(r⃗0) · h⃗+
1

2
h⃗ ·HEp(r⃗0)⃗h (30)

Où h⃗ est un petit paramètre, avec

∇⃗Ep =


∂Ep

∂x
∂Ep

∂y
∂Ep

∂z



H =


∂2Ep

∂x2
∂2Ep

∂x∂y
∂2Ep

∂x∂z
∂2Ep

∂x∂y
∂2Ep

∂y2
∂2Ep

∂y∂z
∂2Ep

∂x∂z
∂2Ep

∂y∂z
∂2Ep

∂z2


HEp(r⃗0) est donc une matrice, HEp(r⃗0)⃗h se calcule avec les règles du calcul matriciel. Si vous
ne l’avez pas vu cela ne fait rien, personne ne vous demande de faire des calculs, tous ces
détails sont là pour votre culture uniquement. HEp est symétrique, car d’après le lemme de
Schwarz :

∂2Ep

∂i∂j
=

∂2Ep

∂j∂i

Le terme ∇⃗Ep(r⃗0) · h⃗ est d’ordre 1 en h⃗, et le terme 1
2 h⃗ ·HEp(r⃗0)⃗h est d’ordre 2 en h⃗. Pour que

r⃗0 soit un point d’équilibre, il faut que ce soit un minimum de l’énergie potentielle, ce qui
implique que

∇⃗Ep(r⃗0) = 0

Cette condition correspond à l’annulation de la force en ce point. Il faut également que pour
tout h⃗ ∈ R3, h⃗ ·HEp(r⃗0)⃗h > 0. Cela correspond à ce que HEp(r⃗0) soit "définie positive", ce qui se
démontre en trouvant les racines d’un polynôme :

χHEp
(λ) = det


∂2Ep

∂x2 − λ
∂2Ep

∂x∂y
∂2Ep

∂x∂z
∂2Ep

∂x∂y
∂2Ep

∂y2
− λ

∂2Ep

∂y∂z
∂2Ep

∂x∂z
∂2Ep

∂y∂z
∂2Ep

∂z2
− λ


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HEp est définie positive si et seulement si toutes les racines de ce polynôme sont strictement
positives. Le théorème spectral nous indique qu’il existe une base orthonormée (u⃗x′ , u⃗y′ , u⃗z′)
telle que HEp(r⃗0) exprimée dans cette base soit diagonale.

HEp(r⃗0) =

k1 0 0
0 k2 0
0 0 k3


Où k1, k2 et k3 sont les racines de χHEp

, toutes strictement positives. Le DL de l’énergie
potentielle s’écrit alors :

Ep(r⃗0 + h⃗) = Ep(r⃗0) +
1

2
(k1x

′2 + k2y
′2 + k3z

′2) (31)

Où h⃗ = (x′, y′, z′) Ce qui donne une force :

F⃗ (r⃗0 + h⃗) ≈ −

k1x
′

k2y
′

k3z
′

 (32)

Ce qui donne le système d’équations :
mẍ′ =−k1x

′

mÿ′ =−k2y
′

mz̈′ =−k3z
′

On a donc un oscillateur harmonique à une dimension sur chaque axe du repère, chacun à des
pulsations différentes ωi =

√
ki
m , que l’on sait résoudre. On retrouve le cas d’un ressort si l’on

suppose que la force est isotrope (la même dans toutes les directions).

Préparation aux olympiades – version 2025-26 – contributeur : Mathurin Rouan
Sources des figures : X Physique SI 2017
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